News Release

23andMe conducts the first genetic study of non-syndromic striae distensae (stretch marks)

Results indicate elastin could be key to more effective prevention and treatment of stretch marks

Peer-Reviewed Publication

23andMe, Inc.

Mountain View, Calif. –August 22nd, 2013 23andMe, the leading personal genetics company, has conducted the first genetic study of striae distensae (stretch marks). Researchers at the company identified four genetic markers significantly associated with the development of stretch marks that inform why some individuals are more susceptible to the skin condition.

Estimates of the prevalence of stretch marks range from 50-80 percent, however the exact causes of stretch marks are still widely unknown. Many factors, including excessive skin distension (during pregnancy, growth spurts, rapid weight gain), prolonged exposure to cortisol and genetics are thought to play a role.

Popular treatments, including topical creams and laser removal often focus on stimulating collagen production to decrease the appearance of stretch marks. The strong association between elastin and stretch marks discovered through this research offers an opportunity to improve methods to prevent and treat stretch marks.

"To date, no genetic variants were known to be associated with isolated stretch marks that affect the general public," said Joyce Tung, Ph.D., author and 23andMe Director of Research. "Through this first of its kind study, we've identified new genetic associations that can provide deeper insights into the root causes of stretch marks, and look forward to continuing research in this space. One intriguing area for further study is the potential effect of genes associated with obesity on the development of stretch marks, both independent of and via changes in BMI. Replicating this work in a more precisely phenotyped population would also be a logical next step."

23andMe conducted a genome-wide association analysis across 33,930 unrelated 23andMe customers of European descent; within the sample there were a total of 13,930 cases and 20,862 controls. Because loose skin is a symptom of syndromes caused by deletion or loss-of-function mutations in elastin, it is likely that variations in the elastic fiber component of the skin extracellular matrix contribute to the development of stretch marks. The expression of collagens, elastin and fibronectin is also decreased in striae, which could be linked to the reorganization and overall loss of elastic fibers in skin affected by stretch marks.

###

The study, titled "Genome-wide association analysis implicates elastic microfibrils in the development of non-syndromic striae distensae" was published on July 11, 2013 in Journal of Investigative Dermatology, a peer-reviewed scientific journal, published by the Nature Publishing Group.

Link to the Published Version of the Article: http://www.nature.com/jid/journal/vaop/ncurrent/full/jid2013196a.html

About 23andMe

23andMe, Inc. is the leading personal genetics company dedicated to helping individuals understand their own genetic information through DNA analysis technologies and web-based interactive tools. The company's Personal Genome Service® enables individuals to gain deeper insights into their ancestry and inherited traits. The vision for 23andMe is to personalize healthcare by making and supporting meaningful discoveries through genetic research. 23andMe, Inc., was founded in 2006, and the company is advised by a group of renowned experts in the fields of human genetics, bioinformatics and computer science. More information is available at http://www.23andme.com.


Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.