News Release

Toward a safer form of acetaminophen

Peer-Reviewed Publication

American Chemical Society

Efforts to develop a safer form of acetaminophen — the pain and fever-reducer that is one of the most widely used drugs — have led to discovery of substances that may have less potentially toxic effects on the liver. A report on the research appears in ACS Medicinal Chemistry Letters.

Roman Shchepin and colleagues explain that a link exists between acetaminophen and liver damage. The damage may be severe and can occur with intentional and accidental overdoses, as well as when susceptible individuals take the drug. Indeed, acetaminophen has been implicated in almost 50 percent of all acute liver failure cases in the United States alone. Scientists have known the biochemical basis of acetaminophen's liver toxicity, and Shchepin and colleagues set out to develop safer versions of acetaminophen.

They describe the design and testing of two compounds that have a similar architecture to acetaminophen, but aren't toxic to liver cells grown in the laboratory. The researchers say that, although further testing is needed, these compounds are promising candidates for acetaminophen replacements.

###

The authors acknowledge funding from the National Institute of General Medical Sciences Center for Clinical Pharmacology and Drug Toxicology.

The American Chemical Society is a nonprofit organization chartered by the U.S. Congress. With more than 163,000 members, ACS is the world's largest scientific society and a global leader in providing access to chemistry-related research through its multiple databases, peer-reviewed journals and scientific conferences. Its main offices are in Washington, D.C., and Columbus, Ohio.

To automatically receive news releases from the American Chemical Society, contact newsroom@acs.org.

Follow us: Twitter Facebook


Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.