News Release

DNA sequencing uncovers secrets of white cliffs of Dover

Peer-Reviewed Publication

University of Exeter

The University of Exeter recently contributed to a major international project to sequence the genome of Emiliania huxleyi, the microscopic plankton species whose chalky skeletons form the iconic white cliffs of Dover. The results of the project are published this week in the journal Nature.

Emiliania huxleyi is one of the most abundant marine phytoplankton species and is a key player in the process of CO2 exchange between the atmosphere and the ocean. In some marine systems 20% of the total carbon is fixed by E. huxleyi. This microscopic alga has influenced the global climate for over 200 million years, so is used as a model system for studying how physical, chemical and biological processes regulate the Earth's systems. The algae form pale chalky cases called coccoliths which during the spring bloom can be seen from space in the seas around the UK. E. huxleyi directly links to climate change through the production of dimethylsulfide (DMS), which induces cloud formation and blocks solar radiation.

Thanks to new technology – next generation DNA sequencing – 13 different isolates were sequenced from around the world, and compared to a complete sequence constructed for E. huxleyi strain CCMP1516. The allowed the team to understand the influences of different environmental conditions on E. huxleyi physiology. The international team found that E. huxleyi possess a higher number of genes than previously published marine phytoplankton genomes, and that most genes were present in multiple copies.

Dr Mark Van Der Giezen from the University of Exeter said: "Using comprehensive analysis to compare different strains of the algae, we demonstrated that E. huxleyi should no longer be considered a single species. Substantial variation in the genome indicates contrasting metabolic composition and supports the idea that E. huxleyi is a species complex."

Comparing patterns, or phylogenetic relationships, in the genomes of the different strains identified three groups which did not relate to geographic origin nor genome size. Further research into the genomes revealed that the E. huxleyi genome includes core regions shared by all samples with some variable elements. Regions with high levels of tandem repeats and low complexity may have allowed rapid evolutionary adaptation over many millions of years, allowing current strains to live in a range of light conditions.

The study of the E. huxleyi genome shows many unexpected features that may be unique or common in microalgae warranting further investigation. For example, metabolic pathways, known previously only in fungi and animals that allow lipid synthesis were found. Using this new insight into an age-old algae, there is future potential for E. huxleyi to be used to synthesise nutritional supplements, biofuels, feedstock and polymer precursors, which may make E. huxleyi a valuable species for cutting-edge biotechnology.

###

Genome sequencing was performed by the US Department of Energy Joint Genome Institute.

About the University of Exeter

The Sunday Times University of the Year 2012-13, the University of Exeter is a Russell Group university and in the top one percent of institutions globally. It combines world-class research with very high levels of student satisfaction. Exeter has over 18,000 students and is ranked 7th in The Sunday Times University Guide, 10th in The Complete University Guide, 10th in the UK in The Times Good University Guide 2012 and 12th in the Guardian University Guide 2014. In the 2008 Research Assessment Exercise (RAE) 90% of the University's research was rated as being at internationally recognised levels and 16 of its 31 subjects are ranked in the top 10, with 27 subjects ranked in the top 20.

The University has invested strategically to deliver more than £350 million worth of new facilities across its campuses in the last few years; including landmark new student services centres - the Forum in Exeter and The Exchange in Cornwall - and world-class new facilities for Biosciences, the Business School and the Environment and Sustainability Institute. It has plans for another £330 million of investment between now and 2016.

http://www.exeter.ac.uk

For further information:

Dr Jo Bowler
University of Exeter Press Office
Office: +44 (0)1392 722062
Mobile: +44(0)7827 309 332
Twitter: @UoE_ScienceNews
j.bowler@exeter.ac.uk


Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.