News Release

Does including parasites upset food web theory? Yes and no, says new paper

Peer-Reviewed Publication

Santa Fe Institute

Parasites Alter Food Web Structures in Expected and Unexpected Ways

image: A network of 4,671 feeding interactions among 68 parasites (in blue) and 117 free-living taxa (green = basal taxa, red = consumers) in the food web of Estero de Punta Banda, Baja California, Mexico. The vertical axis corresponds to trophic level. view more 

Credit: Images produced by J.A. Dunne using Network3D software, available by request from <a href="mailto:jdunne@santafe.edu">jdunne@ santafe.edu</a>.

Parasites comprise a large proportion of the diversity of species in every ecosystem. Despite this, they are rarely included in analyses or models of food webs. If parasites play different roles from other predators and prey, however, their inclusion could fundamentally alter our understanding of how food webs are organized.

In the journal PLOS Biology this week, Santa Fe Institute Professor Jennifer Dunne and collaborators test this assertion and show that including parasites in ecological datasets does alter the structure of food webs, but that most changes occur because of an increase in diversity and complexity rather than from unique characteristics of parasites.

"Current food web models and theory were developed with data for free-living species," says Dunne. "We wanted to understand whether including parasites alters network structure in unique ways, or if observed changes are consistent with the addition of any types of species and links to a food web."

The group of researchers, which included parasitologists and food web ecologists, analyzed highly resolved datasets for seven coastal estuary and marine food webs. They compared three versions of each food web dataset: webs without parasites; webs that included parasites and all of their links to other species; and an intermediate case that included parasites but excluded the "concomitant" links between a predator and the parasites of its prey.

The team found that including parasites altered many aspects of network structure, such as the distribution of feeding links per species, the average shortest feeding chain between pairs of species, and the proportion of species that are omnivores or cannibals. But a closer look suggested that most of these changes were generic effects of increasing the overall diversity and complexity of the network, rather than unique effects attributable to the parasites' roles in food webs.

"Our analyses show that in many ways parasites are similar to other species in terms of their effects on food web organization," says Dunne.

However, the team did find two cases where parasites seem to play special roles that alter aspects of food web structure. One case is when a parasite is eaten along with its host. "The physical intimacy between a parasite and its host is not found as frequently between free-living predators and prey," Dunne says. "The fact that predators incidentally feed on the parasites of their prey can alter certain patterns of interactions among species."

The other case appears to result from the complex life cycles of many of the parasites in these food webs. Parasites can shift hosts in a dramatic fashion, for example by starting out with a cricket as a host, but later requiring a fish host. This results in a more structurally complex feeding niche than is seen for most free-living predators.

"Our research extends the generality of food web theory and provides a more rigorous framework for assessing the impact of any species on trophic organization," says Dunne. "However, it also reveals limitations of current food web models when they are applied to the more diverse and highly resolved data that researchers are increasingly compiling."

###

The Santa Fe Institute is an independent, nonprofit science and education center located in Santa Fe, New Mexico. Its scientists collaborate across disciplines to describe the complex adaptive systems most critical to our future. SFI is supported by philanthropic individuals and foundations, forward-thinking partner companies, and government science agencies. http://www.santafe.edu


Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.