News Release

Imaging technique shows premature birth interrupts vital brain development processes leading to reduced cognitive abilities in infants

Peer-Reviewed Publication

King's College London

Development of the Frontal and Temporal Regions during the Last 3 Months

video: This video shows the development of the frontal and temporal regions of the cerebral cortex in preterm infants during the last three months before the normal time of birth, turning from red to blue as it matures. The primary motor and sensory regions are well developed at the beginning of the sequence, while much of the association cortex involved in complex functions develop rapidly over this period, particularly in the most frontal regions. Despite this rapid maturation, premature babies are less developed at term than infants born at the normal time. view more 

Credit: King's College London

Imaging technique shows premature birth interrupts vital brain development processes, leading to reduced cognitive abilities in infants

Researchers from King's College London have for the first time used a novel form of MRI to identify crucial developmental processes in the brain that are vulnerable to the effects of premature birth. This new study, published today in the Proceedings of the National Academy of Sciences (PNAS), shows that disruption of these specific processes can have an impact on cognitive function.

The researchers say the new techniques developed here will enable them to explore how the disruption of key processes can also cause conditions such as autism, and will be used in future studies to test possible treatments to prevent brain damage.

The study was funded by: the Medical Research Council; the Engineering and Physical Sciences Research Council; the National Institute for Health Research (NIHR) Biomedical Research Centre at Guy's and St Thomas' NHS Foundation trust and King's College London; and the NIHR Biomedical Research Centre at Imperial College London. Infants involved in the study were being cared for in the Neonatal Intensive Care Unit at Queen Charlotte's and Chelsea Hospital.

Scientists from King's College London and Imperial College London used diffusion MRI – a type of imaging which looks at the natural diffusion of water – to observe the maturation of the cerebral cortex where much of the brain's computing power resides. By analysing the diffusion of water in the cerebral cortex of 55 premature infants and 10 babies born at full term they mapped the growing complexity and density of nerve cells across the whole of the cortex in the months before the normal time of birth.

They found that during this period maturation was most rapid in areas of the brain relating to social and emotional processing, decision making, working memory and visual-spatial processing. These functions are often impaired after premature birth, and the researchers found that cortical development was reduced in preterm compared to full term infants, with the greatest effect in the most premature infants. When they re-examined the infants at two years of age, the preterm infants with the slowest cortical development performed less well on neurodevelopmental testing, demonstrating the longer-term impact of prematurity on cortical maturation.

Professor David Edwards, Director of the Centre for the Developing Brain at King's College London, based at the Evelina Children's Hospital, said: 'The number of babies born prematurely is increasing, so it has never been more important to improve our understanding of how preterm birth affects brain development and causes brain damage. We know that prematurity is extremely stressful for an infant, but by using a new technique we are able to track brain maturation in babies to pinpoint the exact processes that might be affected by premature birth. Here we have used innovative ways to understand how the development of the cerebral cortex is affected.

'These findings highlight a key stage of brain development where the neurons branch out to create a complex, mature structure. We can now see that this happens in the latter stages of development that would usually take place in healthy babies when they are still in the womb. This suggests that premature birth can interrupt this vital developmental process. It may explain why we sometimes see adverse effects on brain development in those born only slightly prematurely as we now know that this process is happening right up to the normal time of birth. With this study we found that the earlier a baby is born, the less mature the cortex structure. The weeks a baby loses in the womb really matter.

'These new techniques we've developed to identify these crucial processes will allow us to examine how disruption caused by premature birth can lead to conditions such as autism and learning difficulties. We will also use the technique in future studies to test new treatments to prevent brain damage. It's an extremely exciting step forward.'

###

For further information or a copy of the paper please contact Emma Reynolds, PR Manager (Health) at King's College London, on 0207 848 4334 or email emma.reynolds@kcl.ac.uk

*Video images illustrating the maturing cortex are available on request*

Notes to editors:

Centre for the Developing Brain at King's College London

The Centre brings together researchers from King's College London and clinicians from Guy's and St Thomas', as part of King's Health Partners Academic Health Sciences Centre. The team also works collaboratively with colleagues around the world, particularly with Imperial College London.

The Centre is based at the Evelina Children's Hospital at St Thomas' Hospital. It is home to a state-of-the-art MRI scanner, used for research aimed at reducing the number of children who suffer brain damage in the perinatal period through:

  • Understanding human brain development around the time of birth
  • Creating new capabilities to map cerebral development in health and disease
  • Exploring and exploiting the underlying biology of brain development disorder to create new therapies
  • Conducting clinical trials of novel neuroprotective and neural rescue therapies – members of the Centre helped to show that cooling babies who had been deprived of oxygen during labour as soon as they were delivered minimises brain damage; this is now standard practice around the world.

    King's College London

    King's College London is one of the top 30 universities in the world (2011/12 QS World University Rankings), and the fourth oldest in England. A research-led university based in the heart of London, King's has more than 25,000 students (of whom more than 10,000 are graduate students) from nearly 140 countries, and some 6,500 employees. King's is in the second phase of a £1 billion redevelopment programme which is transforming its estate.

    King's has an outstanding reputation for providing world-class teaching and cutting-edge research. In the 2008 Research Assessment Exercise for British universities, 23 departments were ranked in the top quartile of British universities; over half of our academic staff work in departments that are in the top 10 per cent in the UK in their field and can thus be classed as world leading. The College is in the top seven UK universities for research earnings and has an overall annual income of nearly £450 million.

    King's has a particularly distinguished reputation in the humanities, law, the sciences (including a wide range of health areas such as psychiatry, medicine, nursing and dentistry) and social sciences including international affairs. It has played a major role in many of the advances that have shaped modern life, such as the discovery of the structure of DNA and research that led to the development of radio, television, mobile phones and radar. It is the largest centre for the education of healthcare professionals in Europe; no university has more Medical Research Council Centres.

    King's College London and Guy's and St Thomas', King's College Hospital and South London and Maudsley NHS Foundation Trusts are part of King's Health Partners. King's Health Partners Academic Health Sciences Centre (AHSC) is a pioneering global collaboration between one of the world's leading research-led universities and three of London's most successful NHS Foundation Trusts, including leading teaching hospitals and comprehensive mental health services. For more information, visit: http://www.kingshealthpartners.org.

    About the National Institute for Health Research

    The National Institute for Health Research (NIHR) is funded by the Department of Health to improve the health and wealth of the nation through research. Since its establishment in April 2006, the NIHR has transformed research in the NHS. It has increased the volume of applied health research for the benefit of patients and the public, driven faster translation of basic science discoveries into tangible benefits for patients and the economy, and developed and supported the people who conduct and contribute to applied health research. The NIHR plays a key role in the Government's strategy for economic growth, attracting investment by the life-sciences industries through its world-class infrastructure for health research. Together, the NIHR people, programmes, centres of excellence and systems represent the most integrated health research system in the world. For further information, visit the NIHR website (http://www.nihr.ac.uk). The views expressed in this news release are those of the authors and not necessarily those of the NHS, the NIHR or the Department of Health.


  • Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.