News Release

Electrons are not enough: Cuprate superconductors defy convention

Peer-Reviewed Publication

University of Illinois at Urbana-Champaign, News Bureau

Philip Phillips, University of Illinois at Urbana-Champaign

image: Philip Phillips, a professor of physics and of chemistry at Illinois, and colleagues have found that something other than electrons carry the current in copper-containing semiconductors known as cuprates. view more 

Credit: University of Illinois

CHAMPAIGN, Ill. — To engineers, it's a tale as old as time: Electrical current is carried through materials by flowing electrons. But physicists at the University of Illinois and the University of Pennsylvania found that for copper-containing superconductors, known as cuprates, electrons are not enough to carry the current.

"The story of electrical conduction in metals is told entirely in terms of electrons. The cuprates show that there is something completely new to be understood beyond what electrons are doing," said Philip Phillips, a professor of physics and of chemistry at the U. of I.

In physics, Luttinger's theorem states that the number of electrons in a material is the same as the number of electrons in all of its atoms added together. Electrons are the sub-atomic particles that carry the current in a conductive material. Much-studied conducting materials, such as metals and semiconductors, hold true to the theorem.

Phillips' group works on the theory behind high-temperature superconductors. In superconductors, current flows freely without resistance. Cuprate superconductors have puzzled physicists with their superconducting ability since their discovery in 1987.

The researchers developed a model outlining the breakdown of Luttinger's theorem that is applicable to cuprate superconductors, since the hypotheses that the theorem is built on are violated at certain energies in these materials. The group tested it and indeed found discrepancies between the measured charge and the number of mobile electrons in cuprate superconductors, defying Luttinger.

"This result is telling us that the physics cannot be described by electrons alone," Phillips said. "This means that the cuprates are even weirder than previously thought: Something other than electrons carries the current."

"Theorists have suspected that something like this was true but no one has been able to prove it," Phillips said. "Electrons are charged. Therefore, if an electron does not contribute to the charge count, then there is a lot of explaining to do."

Now the researchers are exploring possible candidates for current-carriers, particularly a novel kind of excitation called unparticles.

###

Phillips, U. of I. undergraduate student Kiaran Dave (now a graduate student at MIT) and University of Pennsylvania professor Charles Kane published their findings in the journal Physical Review Letters. The National Science Foundation and the Center for Emergent Superconductivity (through a DOE Energy Frontiers Research Center) supported this work.

Editor's note: To reach Philip Phillips, call 217-244-6703; email dimer@illinois.edu.

The paper, "Absence of Luttinger's Theorem due to Zeros in the Single-Particle Green Function," is available online.

Link to P. Phillips web page: http://physics.illinois.edu/people/profile.asp?dimer

Link to paper: http://prl.aps.org/abstract/PRL/v110/i9/e090403


Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.