News Release

Way to make one-way flu vaccine discovered by Georgia State researcher

Peer-Reviewed Publication

Georgia State University

A new process to make a one-time, universal influenza vaccine has been discovered by a researcher at Georgia State University's Center for Inflammation, Immunity and Infection and his partners.

Associate Professor Sang-Moo Kang and his collaborators have found a way to make the one-time vaccine by using recombinant genetic engineering technology that does not use a seasonal virus.

Instead, the new vaccine uses a virus' small fragment that does not vary among the different strains of flu viruses.

By using the fragment and generating particles mimicking a virus in structure, the immune system can learn to recognize any type of flu virus and attack the pathogen, preventing illness. The research appears in a recent edition of the journal Molecular Therapy, published by the Nature Publishing Group.

"We can now design a vaccine that makes it easier to induce a good immune system response to recognize a pathogen, regardless of how the surface proteins of the virus change," Kang said.

Health officials and scientists must alter flu vaccines every year to match expected strains, and often shortages can result, such as what happened during the 2009 Swine Flu outbreak. A one-time vaccine would prevent such a scenario, Kang said.

"Outbreaks of pandemic can be a dangerous situation, and our current vaccination procedures are not perfect," he said.

Using the new one-time vaccine, using only a fragment rather than the live viral vaccine, such as FluMist, or a killed virus itself, would be safer for people with weakened immune systems, young children and the elderly, Kang said.

The team included researchers from Georgia State, the Emory Vaccine Center at the Emory University School of Medicine, Sungshin Women's University in South Korea and the Animal, Plant and Fisheries Quarantine and Inspection Agency in South Korea.

###

The research was mainly supported by a grant from the National Institutes of Health and partially supported by the government of South Korea.

The article is "Virus-like particles containing multiple M2 extracellular domains confer improved cross protection against various subtypes of influenza virus," Nature Molecular Therapy, http://dx.doi.org/10.1038/MT.2012.246.

For more about the Center for Inflammation, Immunity and Infection, visit inflammation.gsu.edu.


Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.