News Release

Increased dietary fructose linked to elevated uric acid levels and lower liver energy stores

Peer-Reviewed Publication

Wiley

Obese patients with type 2 diabetes who consume higher amounts of fructose display reduced levels of liver adenosine triphosphate (ATP)—a compound involved in the energy transfer between cells. The findings, published in the September issue of Hepatology, a journal of the American Association for the Study of Liver Diseases, indicate that elevated uric acid levels (hyperuricemia) are associated with more severe hepatic ATP depletion in response to fructose intake.

This exploratory study, funded in part by grants from the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), also suggests that uric acid levels may serve as a marker for increased fructose consumption and hepatic ATP depletion. Uric acid is produced by the breakdown of purines, natural substances commonly found in foods. According to the authors, increased dietary fructose can alter the body's metabolism and energy balance. Energy depletion in the liver may be associated with liver injury in patients with non-alcoholic fatty liver disease (NAFLD) and in those at risk for developing this metabolic condition.

Fructose is a simple sugar that fuels the body, and is found in fruits and vegetables. High fructose corn syrup—a mixture of glucose and fructose—is used as a sweetener in consumer food products such as bread, cereal, and soda. Prior research reports that fructose consumption in the U.S. has more than doubled in the past 30 years. In fact, studies have shown that Americans' fructose intake climbed from 15 grams per day in the early 1900s to 55 grams per day in 1994, which experts believe stems from an increase in soft drink consumption.

"There is an alarming trend of increased rates of obesity, type 2 diabetes and NAFLD in the U.S.," said lead author Dr. Manal Abdelmalek from Duke University Medical Center. "Given the concurrent rise in fructose consumption and metabolic diseases, we need to fully understand the impact of a high-fructose diet on liver function and liver disease."

For the present study, 244 obese and diabetic adults from the Look AHEAD Study were evaluated, with dietary fructose consumption estimated by the food frequency questionnaire. Liver ATP and uric acid levels were measured in 105 patients who participated in the Look AHEAD Fatty Liver Ancillary Study. Researchers assessed the change in liver ATP content using an IV fructose challenge in 25 subjects, comparing patients with low fructose consumption (less than 15 grams per day) to those with high fructose consumption (greater than 15 grams per day).

The team found that participants with a high intake of dietary fructose had lower liver ATP levels at baseline and a greater change in ATP content following the fructose challenge than those who consumed a lower amount of fructose. Patients with high uric acid levels (5.5 mg/dL or more) displayed lower ATP stores in response to fructose.

Dr. Abdelmalek concludes, "High fructose consumption and elevated levels of uric acid are associated with more severe depletion of liver ATP. Our findings suggest that increased dietary fructose intake may impair liver "energy balance." Further research to define the clinical implications of these findings on metabolism and NAFLD is necessary." The authors highlight the importance of public awareness of the risks associated with a diet high in fructose.

###

This study is published in Hepatology. Media wishing to receive a PDF of this articles may contact sciencenewsroom@wiley.com.

Full Citation: "Higher Dietary Fructose Is Associated with Impaired Hepatic ATP Homeostasis in Obese Individuals with Type 2 Diabetes." Manal F. Abdelmalek, Mariana Lazo, Alena Horska, Susanne Bonekamp, Edward W. Lipkin, Ashok Balasubramanyam, John P. Bantle, Richard J. Johnson, Anna Mae Diehl, Jeanne M. Clark, and the Fatty Liver Subgroup of the Look AHEAD Research Group. Hepatology; (DOI: 10.1002/hep.25741); Print Issue Date: September, 2012. URL: http://onlinelibrary.wiley.com/doi/10.1002/hep.25741/abstract

Author Contact:

To arrange an interview with Dr. Abdelmalek, please contact Rachel Bloch with Duke University at rachel.bloch@duke.edu or at +1 919-419-5069.

About the Journal:

Hepatology is the premier publication in the field of liver disease, publishing original, peer-reviewed articles concerning all aspects of liver structure, function and disease. Each month, the distinguished Editorial Board monitors and selects only the best articles on subjects such as immunology, chronic hepatitis, viral hepatitis, cirrhosis, genetic and metabolic liver diseases and their complications, liver cancer, and drug metabolism. Hepatology is published on is published by Wiley on behalf of the American Association for the Study of Liver Diseases (AASLD). For more information, please visit http://wileyonlinelibrary.com/journal/hep.

About Wiley

Founded in 1807, John Wiley & Sons, Inc. has been a valued source of information and understanding for more than 200 years, helping people around the world meet their needs and fulfill their aspirations. Wiley and its acquired companies have published the works of more than 450 Nobel laureates in all categories: Literature, Economics, Physiology or Medicine, Physics, Chemistry, and Peace.

Our core businesses publish scientific, technical, medical, and scholarly journals, encyclopedias, books, and online products and services; professional/trade books, subscription products, training materials, and online applications and Web sites; and educational materials for undergraduate and graduate students and lifelong learners. Wiley's global headquarters are located in Hoboken, New Jersey, with operations in the U.S., Europe, Asia, Canada, and Australia. The Company's Web site can be accessed at http://www.wiley.com. The Company is listed on the New York Stock Exchange under the symbols JWa and JWb.


Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.