News Release

More than 1 way to be healthy: Map of bacterial makeup of humans reveals microbial rare biosphere

NIH Human Microbiome Project finds patterns of microbial diversity, distributions earlier discovered in ocean ecosystems by scientists at MBL Woods Hole

Peer-Reviewed Publication

Marine Biological Laboratory

Gut Microbes

image: This photograph shows an intestinal section from a gnotobiotic mouse model inoculated with selected human bacterial species. Blue=Bacteroides WH2, green=Bacteroides thetaiotamicron, pink=Bacteroides vulgatus, yellow=Collinsella aerofaciens, red=Ruminococcus torques. view more 

Credit: Yuko Hasegawa, MBL Woods Hole

WOODS HOLE, MASS. – The landmark publication this week of a "map" of the bacterial make-up of healthy humans has deep roots in an unexpected place: the ocean.

Microbial communities that live on and in the human body, known collectively as the microbiome, are thought to have a critical role in human health and disease. Five years ago, the National Institutes of Health launched the ambitious Human Microbiome Project (HMP) to define the boundaries of bacterial variation found in 242 healthy human beings.

"In order to understand what sick is, it's helpful to define the healthy microbiome first," says MBL scientist Susan M. Huse, lead author of one of the HMP reports published this week.

The project's 200 scientists from 80 institutions, including Huse and Mitchell Sogin from the MBL, faced the daunting task of making sense of more than 5,000 samples of human and bacterial DNA and 3.5 terabases of genomic data.

The solution? The HMP adopted several, state-of-the-art genetic sequencing and analysis methods, many of which were originally developed by the MBL for the International Census of Marine Microbes—a massive, ten-year project that yielded the first inventory of microbial diversity in the world's oceans.

And, perhaps not surprisingly, the HMP discovered that microbial distributions in the human body are not so different from those in ocean ecosystems.

Whether in the human gut, mouth, or vagina, the Pacific Ocean or the Sargasso Sea, microbial communities contain a few highly abundant bacterial types plus many, many more low-abundance types (the so-called "rare biosphere," a phenomenon first discovered in ocean samples by Sogin and his MBL colleagues).

"The more closely we look, the more bacterial diversity we find," Huse says. "We can't even name all these kinds of bacteria we are discovering in human and environmental habitats. It's like trying to name all the stars." HMP researchers concluded that an estimated 10,000 bacterial species occupy the human microbiome.

The HMP also confirmed that in people, like in the ocean, which bacteria are abundant and which are rare varies from site to site. The common bacterium Bacteroides, for instance, can comprise nearly 100% of the microbes in one person's gut, yet be barely present in another's.

"What this means is, there is not just one way to be healthy, " says Huse. "There doesn't have to be one or two 'just right' gut communities, but rather a range of 'just fine' communities."

Another key finding of the HMP is that nearly everyone carries pathogens—microbes known to cause illness. In healthy individuals, however, pathogens cause no disease; they simply co-exist with the rest of the rare and abundant microbes in the person's microbiome. Researchers now must figure out why some pathogens turn deadly and under what conditions, likely revising current concepts of how microorganisms cause disease.

"It's really important to understand how and why these rare organisms 'swing,'" Huse says. "And one of the problems we have is people take antibiotics, which really change the microbiome. Antibiotics can kill the abundant bacteria, which then allows the rare bacteria to flourish in a gut environment full of food. If the rare bacteria include a pathogen, then you can get sick."

The HMP employed two major strategies to characterize the microbes in 18 different sites in the mouth, nose, skin, vagina, and stool of the volunteers. The first strategy told them "who" was there. Called 16s rRNA tag sequencing, the MBL first adapted this method for "next-generation" sequencing in the mid-2000s, in order to identify which microbes were present in ocean samples and their relative abundances. (Next-generation sequencing produces large volumes of sequencing data much more inexpensively than traditional methods.) The second strategy the HMP adopted, called shotgun sequencing, was employed to find out what functions the microbes might be performing.

"Now we have a list of 'who' is in the human microbiome, and another list of what they are doing. Part of the task ahead is to tie together which organisms are doing what functions," Huse says.

Understanding how people are the same, despite the variations in their microbiomes, is another significant challenge for future investigation. "At some level there have to be similarities, because we are all eating and digesting and so forth," Huse says. "Perhaps the different aspects of digestion and immune system interaction can be performed by a variety of different assemblages of bacteria."

###

Citations:

Huttenhower C, et al (The Human Microbiome Project Consortium) (2012) Structure, function and diversity of the healthy human microbiome. Nature 486: 207-214.

Methe BA, et al (The Human Microbiome Project Consortium) (2012) A framework for human microbiome research. Nature 486: 215-221.

Huse SA, et al (2012) A Core Human Microbiome as Viewed Through 16S rRNA Sequence Clusters. PLoS ONE 7(6): e34242. doi:10.1371/journal.pone.0034242.

Resources:

More information about the HMP can be found at http://commonfund.nih.gov/hmp/index.aspx

An illustration showing the body sites that were sampled as part of the Human Microbiome Project healthy cohort study is available at: http://www.genome.gov/pressDisplay.cfm?photoID=20163

Background:

Sogin ML, Morrison HG, Huber JA, Mark Welch D, Huse SM, Neal PR, Arrieta JM, and Herndl GJ (2006) Microbial diversity in the deep sea and the underexplored "rare biosphere." Proc. Natl. Acad. Sci. USA 103:12115-12120.

Huse SM, Mark Welch D, Morrison HG, and Sogin ML (2010) Ironing out the wrinkles in the rare biosphere. Environ Microbiol. 12:1889-98.

Dethlefsen L, Huse SM, Sogin ML, Relman DA (2008) The pervasive effects of an antibiotic on human gut microbiota, as revealed by deep 16S rRNA sequencing. PLoS Biology 6: 2383-2400.

The Human Microbiome Project is managed by National Human Genome Research Institute, in partnership with the NIH Office of the Director, the National Institute of Allergy and Infectious Diseases, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Cancer Institute, National Institute of Dental and Craniofacial Research, and National Institute of Diabetes and Digestive and Kidney Diseases, all part of NIH.

The Marine Biological Laboratory (MBL) is dedicated to scientific discovery and improving the human condition through research and education in biology, biomedicine, and environmental science. Founded in 1888 in Woods Hole, Massachusetts, the MBL is an independent, nonprofit corporation.


Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.