News Release

New advances in treating inherited retinal diseases highlighted in Human Gene Therapy

Peer-Reviewed Publication

Mary Ann Liebert, Inc./Genetic Engineering News

<i>Human Gene Therapy</i>

image: Human Gene Therapy is an authoritative, peer-reviewed journal presenting reports on the transfer and expression of genes in mammals, including humans. view more 

Credit: ©2012 Mary Ann Liebert, Inc., publishers

New Rochelle, NY, May 8, 2012—Gene therapy strategies to prevent and treat inherited diseases of the retina that can cause blindness have progressed rapidly. Positive results in animal models of human retinal disease continue to emerge, as reported in several articles published in Human Gene Therapy, a peer-reviewed journal from Mary Ann Liebert, Inc., publishers. The articles are available free on the Human Gene Therapy website at http://www.liebertpub.com/hum.

After 20 years of promising research, testing in animal models, and initial clinical trial results of gene therapy to treat retinal dystrophies, Robin Ali, University College London Institute of Ophthalmology (UK) is "optimistic about the future prospects for retinal gene therapy" mainly because the retina has proven to be a good and accessible target for gene delivery, and scientists have developed efficient and safe viral delivery systems that can successfully introduce therapeutic genes into photoreceptor cells in the retina. The main challenge now is to increase the number of gene therapies in clinical trials and to optimize these treatments for patients, says Dr. Ali in the Commentary "Gene Therapy for Retinal Dystrophies: Twenty Years in the Making."

Retinitis pigmentosa (RP) is one group of inherited disorders that causes degeneration of the retina due to various gene mutations. Astra Dinculescu, University of Florida, Gainesville, and colleagues from University of Pennsylvania (Philadelphia), National Autonomous University of Mexico, and Glasgow Caledonian University (Scotland) provide proof-of-concept that gene-based therapy may be able to replace the mutant gene in one type of RP in humans. They demonstrate that replacement of the mutant gene in a mouse model of RP prevented subsequent degeneration of the retina in the article "Gene Therapy for Retinitis Pigmentosa Caused by MRFP Mutations: Human Phenotype and Preliminary Proof of Concept."

Haoyu Mao and coauthors from University of Florida, Gainesville, and University of North Texas Health Science Center (Fort Worth) showed long-term success in maintaining normal retinal structure and function following delivery of a human rhodopsin gene to a mouse model of RP. Their findings are reported in the article "Long-Term Rescue of Retinal Structure and Function by Rhodopsin RNA Replacement with a Single Adeno-Associated Viral Vector in P23H RHO Transgenic Mice."

"Inherited diseases affecting retinal function are likely to be in the first wave of commercial successes," says James M. Wilson, MD, PhD, Editor-in-Chief of Human Gene Therapy, and Director of the Gene Therapy Program, Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia.

###

About the Journal

Human Gene Therapy, the Official Journal of the European Society of Gene and Cell Therapy, British Society for Gene Therapy, French Society of Cell and Gene Therapy, German Society of Gene Therapy, and five other gene therapy societies is an authoritative peer-reviewed journal published monthly in print and online that presents reports on the transfer and expression of genes in mammals, including humans. Related topics include improvements in vector development, delivery systems, and animal models, particularly in the areas of cancer, heart disease, viral disease, genetic disease, and neurological disease, as well as ethical, legal, and regulatory issues related to the gene transfer in humans. Tables of content and a sample issue may be viewed on the Human Gene Therapy website at http://www.liebertpub.com/hum.

About the Publisher

Mary Ann Liebert, Inc. is a privately held, fully integrated media company known for establishing authoritative peer-reviewed journals in many promising areas of science and biomedical research, including Tissue Engineering, Human Gene Therapy and HGT Methods, and Rejuvenation Research. Its biotechnology trade magazine, Genetic Engineering & Biotechnology News (GEN), was the first in its field and is today the industry's most widely read publication worldwide. A complete list of the firm's 70 journals, newsmagazines, and books is available on the Mary Ann Liebert, Inc. website at http://www.liebertpub.com.

Mary Ann Liebert, Inc.
140 Huguenot St., New Rochelle, NY 10801-5215
http://www.liebertpub.com
Phone: (914) 740-2100
(800) M-LIEBERT
Fax: (914) 740-2101


Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.