News Release

Pasta-shaped radio waves beamed across Venice

Peer-Reviewed Publication

IOP Publishing

A group of Italian and Swedish researchers appears to have solved the problem of radio congestion by cleverly twisting radio waves into the shape of fusilli pasta, allowing a potentially infinite number of channels to be broadcast and received.

Furthermore, the researchers have demonstrated this in real-life conditions by beaming two twisted radio waves across the waters of Venice.

Their results have been reported today, Friday 2 March, in the Institute of Physics and German Physical Society's New Journal of Physics and are accompanied by a video abstract that gives an excellent insight into the authors' work.

As the world continues to adapt in the digital age, the introduction of new mobile smartphones, wireless internet and digital TVs means the number of radio frequency bands available to broadcast information gets smaller and smaller.

"You just have to try sending a text message at midnight on New Year's Eve to realise how congested the bands are," said lead author Dr Fabrizio Tamburini. The researchers, from the University of Padova, Italy, and the Angstrom Laboratory, Sweden, devised a solution to this by manipulating waves so that they can hold more than one channel of information.

A wave can twist about its axis a certain number of times in either a clockwise or anti-clockwise direction, meaning there are several configurations that it can adopt.

"In a three-dimensional perspective, this phase twist looks like a fusillli-pasta-shaped beam. Each of these twisted beams can be independently generated, propagated and detected even in the very same frequency band, behaving as independent communication channels," Tamburini continued.

To demonstrate this, the researchers transmitted two twisted radio waves, in the 2.4 GHz band, over a distance of 442 metres from a lighthouse on San Georgio Island to a satellite dish on a balcony of Palazzo Ducale on the mainland of Venice, where it was able to pick up the two separate channels.

"Within reasonable economic boundaries, one can think about using five orbital angular momentum states, from 𔃃 (counter-clockwise) up to 5 (clockwise), including untwisted waves. In this instance, we can have 11 channels in one frequency band.

"It is possible to use multiplexing, like in digital TV, on each of these to implement even more channels on the same states, which means one could obtain 55 channels in the same frequency band," said Tamburini.

In addition to increasing the quantity of information being passed around our planet, this new discovery could also help lend an insight into objects far out in our galaxy. Black holes, for example, are constantly rotating and as waves pass them, they are forced to twist in line with the black hole.

According to Tamburini, analysing the incoming waves from the supermassive black hole at the centre of the Milky Way, Sagittarius A, could help astronomers obtain crucial information about the rotation of this "million-solar mass monster."

###

From Friday 2 March, the full paper can be downloaded from http://iopscience.iop.org/1367-2630/14/3/033001/article

Notes to Editors

Contact

1. For further information, a full draft of the journal paper or contact with one of the researchers, contact IOP Publishing Press Officer, Michael Bishop:
Tel: 0117 930 1032
E-mail: Michael.Bishop@iop.org

Encoding many channels on the same frequency through radio vorticity: first experimental test

2. The published version of the paper "Encoding many channels on the same frequency through radio vorticity: first experimental test" Tamburini F et al 2012 New J. Phys. 14 033001 will be freely available online from Friday 2 March. It will be available at http://iopscience.iop.org/1367-2630/14/3/033001/article

New Journal of Physics

3. New Journal of Physics publishes across the whole of physics, encompassing pure, applied, theoretical and experimental research, as well as interdisciplinary topics where physics forms the central theme. All content is permanently free to read and the journal is funded by an article publication charge.

IOP Publishing

4. IOP Publishing provides publications through which leading-edge scientific research is distributed worldwide. IOP Publishing is central to the Institute of Physics (IOP), a not-for-profit society. Any financial surplus earned by IOP Publishing goes to support science through the activities of IOP. Beyond our traditional journals programme, we make high-value scientific information easily accessible through an ever-evolving portfolio of community websites, magazines, conference proceedings and a multitude of electronic services. Focused on making the most of new technologies, we're continually improving our electronic interfaces to make it easier for researchers to find exactly what they need, when they need it, in the format that suits them best. Go to http://ioppublishing.org/

The Institute of Physics

5. The Institute of Physics is a leading scientific society promoting physics and bringing physicists together for the benefit of all.

It has a worldwide membership of around 40 000 comprising physicists from all sectors, as well as those with an interest in physics. It works to advance physics research, application and education; and engages with policy makers and the public to develop awareness and understanding of physics. Its publishing company, IOP Publishing, is a world leader in professional scientific communications. Go to www.iop.org

The German Physical Society

6. The German Physical Society (DPG) with a tradition extending back to 1845 is the largest physical society in the world with more than 59,000 members. The DPG sees itself as the forum and mouthpiece for physics and is a non-profit organisation that does not pursue financial interests. It supports the sharing of ideas and thoughts within the scientific community, fosters physics teaching and would also like to open a window to physics for all those with a healthy curiosity.


Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.