News Release

Conventional thought on ACL injury mechanism challenged

Combination of factors cause ACL to rupture

Peer-Reviewed Publication

Orthopaedic Research Society (ORS)

Landing from a jump can cause a non-contact anterior cruciate ligament (ACL) injury. But evidence presented at the Orthopaedic Research Society 2012 Annual Meeting demonstrates that the injury mechanism that causes that ACL injury involves a combination of factors rather than a single factor as some have claimed. Many hold the view that an athlete ruptures the ACL via a single plane motion -- the tibia moving forward due to a large quadriceps contraction.

According to Timothy E. Hewett, PhD, FACSM, Director of Research, Ohio State University Sports Health and Performance Institute and Cincinnati Children's Sports Medicine Biodynamics Center, that injury occurs due to a tri-planar multi-dimensional combination of factors. "Sometimes in science we have a lot of clinical expertise and a lot of engineering expertise but we don't have much—what I call--'common sense-pertise'."

"Is it just anterior translation that strains and tears the ACL? Is it just knee abduction or that inward motion that tears the ACL? Is it just internal rotation that tears the ACL? Our study demonstrates that each one of these factors can strain the ACL. But it is the combination of anterior translation, abduction and internal rotation that likely ruptures the ACL," Dr. Hewett stated.

Contrary to conventional thought, his study demonstrated abduction strained the ACL more than anterior translation; internal rotation was equal to that of anterior translation.

The researchers also had a novel finding about internal rotation torque. "We showed abduction increased the load on the ACL just as much as anterior translation did. Internal rotation increased load just as much as anterior translation did. But most importantly, when all three are combined, there was an additive effect in all three planes," he explained.

Dr. Hewett and his colleagues conducted simulated jump landings on nineteen models. There were 17 (89.5%) ACL failures using a custom designed drop-stand. The models were divided into two loading groups: without anterior shear and with anterior shear.

They tested the effects of anterior tibial shear, abduction and internal rotation under dynamic axial loading on ACL biomechanics. They found that single-axis abduction increased average ACL strain from 5.8 to 9.8 percent. In both groups, the addition of abduction or internal rotation increased ACL loading—with abduction loading the ACL more than internal rotation.

Under axial impact, the combination of abduction, internal rotation and anterior shear the average ACL strain significantly increased.

"Data from this study indicates that the most critical dynamic condition that leads to ACL failure is a combination of anterior shear, abduction and internal rotation under axial impact," Dr. Hewett concluded.

###

This study was funded by grants from the National Institutes of Health (NIH)/National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS).

About the Orthopaedic Research Society (ORS):

The Orthopaedic Research Society (ORS) is the pre-eminent organization for the advancement of musculoskeletal research. It seeks to transform the future through global multidisciplinary collaborations—focusing on the complex challenges of orthopaedic treatment. The ORS advances the global orthopaedic research agenda through excellence in research, education, collaboration, communication and advocacy. The ORS Annual Meeting and publication of the Journal of Orthopaedic Research provide vital forums for the musculoskeletal community to communicate the current state of orthopaedic research. http://www.ors.org


Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.