News Release

Scientists reach the heights with gecko-inspired tank robot

Peer-Reviewed Publication

IOP Publishing

Researchers have developed a tank-like robot that has the ability to scale smooth walls, opening up a series of applications ranging from inspecting pipes, buildings, aircraft and nuclear power plants to deployment in search and rescue operations.

Their study, published today, 1 November, in IOP Publishing's journal Smart Materials and Structures, is the first to apply this unique, bioinspired material to a robot that operates in a tank-like manner.

This method offers an alternative to the magnets, suction cups, spines and claws that have all been presented as possible mechanisms, but seem to fall at the same hurdle – the ability to climb smooth surfaces such as glass or plastic.

Drawing inspiration from the gecko, researchers have been able to create adhesives that carefully mimic the toe pads of the lizard that give it the amazing ability to climb smooth vertical surfaces and shuffle across ceilings.

A video of the robot in action can be seen here http://www.youtube.com/watch?v=tont-BzM1II.

Tank-like robots, driven by belts rather than a set of legs, are advantageous in that they have a simplified mechanical design and control architecture, have an increased mobility and can be easily expanded, just like a train, if you need to increase the load the robot is carrying.

The new, 240g robot, also known as the Timeless Belt Climbing Platform (TBCP-II) and developed by researchers at Simon Fraser University Burnaby, is capable of reliably transferring from a flat surface to a wall over both inside and outside corners at speeds of up to 3.4cm/s.

TBCP-II is also fitted with a multitude of sensors that are able to detect the surroundings of the robot and change its course of action accordingly.

Lead author, researcher Jeff Krahn, said: "With an adequate power supply, our robot is capable of functioning fairly independently when it encounters larger-scale objects such as boxes or walls. However, we are still developing a control strategy to ensure the robot is capable of fully autonomous functionality."

The toes of geckos have amazing characteristics that allow them to adhere to most surfaces and research suggests that they work as result of van der Waals forces – very weak, attractive forces that occur between molecules.

These dry, but sticky toe pads, also known as dry fibrillar adhesives, were recreated in the lab using the material polydimethylsiloxane (PDMS) and were manufactured to contain very small mushroom cap shapes that were 17 micrometres wide and 10 micrometres high.

"While van der Waals forces are considered to be relatively weak, the thin, flexible overhang provided by the mushroom cap ensures that the area of contact between the robot and the surface is maximized.

"The adhesive pads on geckos follow this same principle by utilizing a large number of fibres, each with a very small tip. The more fibres a gecko has in contact, the greater attachment force it has on a surface," Krahn continued.

###

Notes to Editors

Contact

1. For further information, a full draft of the journal paper or contact with one of the researchers, contact IOP Press Officer Michael Bishop:
Tel: 0117-930-1032
E-mail: Michael.Bishop@iop.org

Smart Materials and Structures

2. Smart Materials and Structures is a research journal dedicated to technical advances in smart materials, systems and structures, including materials, sensing and actuation, optics and electromagnetics, structures, control and information processing.

IOP Publishing

3. IOP Publishing provides publications through which leading-edge scientific research is distributed worldwide. IOP Publishing is central to the Institute of Physics (IOP), a not-for-profit society. Any financial surplus earned by IOP Publishing goes to support science through the activities of IOP. Beyond our traditional journals programme, we make high-value scientific information easily accessible through an ever-evolving portfolio of community websites, magazines, conference proceedings and a multitude of electronic services. Focused on making the most of new technologies, we're continually improving our electronic interfaces to make it easier for researchers to find exactly what they need, when they need it, in the format that suits them best. Go to http://ioppublishing.org/

The Institute of Physics

4. The Institute of Physics is a leading scientific society promoting physics and bringing physicists together for the benefit of all.

It has a worldwide membership of around 40 000 comprising physicists from all sectors, as well as those with an interest in physics. It works to advance physics research, application and education; and engages with policy makers and the public to develop awareness and understanding of physics. Its publishing company, IOP Publishing, is a world leader in professional scientific communications. Go to http://www.iop.org


Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.