News Release

High tech detection of breast cancer using nanoprobes and SQUID

Peer-Reviewed Publication

BMC (BioMed Central)

Mammography saves lives by detecting very small tumors. However, it fails to find 10-25% of tumors and is unable to distinguish between benign and malignant disease. New research published in BioMed Central's open access journal Breast Cancer Research provides a new and potentially more sensitive method using tumor–targeted magnetic nanoprobes and superconducting quantum interference device (SQUID) sensors.

A team of researchers from University of New Mexico School of Medicine and Cancer Research and Treatment Center, Senior Scientific, LLC, and the Center for Integrated Nanotechnologies facility at Sandia National Laboratories created nanoprobes by attaching iron-oxide magnetic particles to antibodies against HER-2, a protein overexpressed in 30% of breast cancer cases. Using these tiny protein-iron particles the team was able to distinguish between cells with HER-2 and those without, and were able to find HER-2 cancer cells in biopsies from mice. In their final test the team used a synthetic breast to determine the potential sensitivity of their system.

Dr Helen Hathaway explained, "We were able to accurately pinpoint 1 million cells at a depth of 4.5 cm. This is about 1000x fewer cells than the size at which a tumor can be felt in the breast and 100x more sensitive than mammographic x-ray imaging. While we do not expect the same level of nanoparticle uptake in the clinic, our system has an advantage in that dense breast tissue, which can mask traditional mammography results, is transparent to the low-frequency magnetic fields detected by the SQUID sensors."

Future refining of the system could allow not only tumor to be found but to be classified according to protein expression (rather than waiting for biopsy results). This in turn could be used to predict disease progression and refine treatment plans and so improve patient survival.

###

Media Contact
Dr Hilary Glover
Scientific Press Officer, BioMed Central


Tel: 44-20-3192-2370
Email: hilary.glover@biomedcentral.com

Notes to Editors

1. Detection of breast cancer cells using targeted magnetic nanoparticles and ultra-sensitive magnetic field sensors Helen J Hathaway, Kimberly S Butler, Natalie L Adolphi, Debbie M Lovato, Robert Belfon, Danielle L Fegan, Todd C Monson, Jason E Trujillo, Trace E Tessier, Howard C Bryant, Dale L Huber, Richard S Larson and Edward R Flynn. Breast Cancer Research (in press)

Please name the journal in any story you write. If you are writing for the web, please link to the article. All articles are available free of charge, according to BioMed Central's open access policy.

Article citation and URL available on request at press@biomedcentral.com on the day of publication.

2. Breast Cancer Research is an international, peer-reviewed online journal, publishing original research, reviews, commentaries and reports. Research articles of exceptional interest are published in all areas of biology and medicine relevant to breast cancer, including normal mammary gland biology, with special emphasis on the genetic, biochemical, and cellular basis of breast cancer. In addition, the journal publishes clinical studies with a biological basis, including Phase I and Phase II trials.

3. BioMed Central (http://www.biomedcentral.com/) is an STM (Science, Technology and Medicine) publisher which has pioneered the open access publishing model. All peer-reviewed research articles published by BioMed Central are made immediately and freely accessible online, and are licensed to allow redistribution and reuse. BioMed Central is part of Springer Science+Business Media, a leading global publisher in the STM sector.


Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.