News Release

Forest Service and partners to conduct longleaf pine-carbon research on military bases in 3 states

Study to answer carbon cycle questions, help offset emissions, and promote forest health

Business Announcement

USDA Forest Service ‑ Southern Research Station

Kurt Johnsen Discusses the Project (2 of 2)

audio: In the audio, Johnsen says, “The Southern Research Station will measure important ways carbon is stored in longleaf pine forests. First, we will determine how fast longleaf pine roots decompose after a tree is harvested. We suspect that the carbon in these dead roots is retained longer than in other major southern pines. Second, we’ll measure the amount of carbon in charcoal and soot that is harbored in the soil of these fire-adapted forest areas.” view more 

Credit: Stevin Westcott, Press Officer, USDA Forest Service Southern Research Station

RESEARCH TRIANGLE PARK, NC – USDA Forest Service Southern Research Station (SRS) scientists and university partners are beginning work on an innovative research project in three states that will help the Department of Defense (DOD) better manage longleaf pine forests on military bases for absorbing climate-changing carbon dioxide and providing other ecological services. SRS, Auburn University (the lead institution) and University of Florida researchers will conduct the five-year, $2.4 million study on longleaf pine forests on Fort Polk in Louisiana, Fort Benning in Georgia, and Camp Lejeune in North Carolina. Research organizers say the study is the largest carbon sequestration assessment of longleaf pine ecosystems conducted on southern military bases.

"This project will give the Defense Department biologically based models that will improve the military's ability to manage longleaf pine forests for carbon sequestration, productivity, and biodiversity, while promoting the health and restoration of these native ecosystems," said Kurt Johnsen, Ph.D., a plant physiologist based in Research Triangle Park, NC, and SRS's principal investigator on the project. "In addition, the research will help answer larger questions about the carbon cycle in longleaf pine forests and provide valuable information that the federal government and others can use in offsetting carbon dioxide emissions."

Longleaf pine forests were once the largest temperate forest type in North America occupying up to 90 million acres across the South. Land clearing for crops and pastures, logging, turpentine operations, conversion to other southern pines, and the interruption of natural fire regimes reduced the longleaf forest to approximately 3 percent of its original range. Longleaf pine forests have a high potential to sequester carbon and there is a renewed interest in restoring longleaf pine for high-value wood products, pine straw production and wildlife benefits. Longleaf pine ecosystems, among the most diverse in temperate North America, provide habitat for threatened and endangered species such as the red-cockaded woodpecker.

The research is funded by DOD through the Strategic Environmental Research and Development Program (SERDP), an environmental research program. SERDP uses the latest science and technology to improve environmental performance, reduce costs, and enhance and sustain mission capabilities within DOD.

The study supports DOD's transition of forest management toward an ecological forestry model that balances military mission support with the maintenance of ecological services with a view toward offsetting facility carbon emissions.

Lisa Samuelson, Ph.D., tree physiologist and director of the Center for Longleaf Pine Ecosystems at Auburn University, will direct the project. She will also lead an effort to quantify carbon in longleaf pine aboveground mass and root systems as well as other components of the 45,000 acres of longleaf pine ecosystems at Fort Polk, Fort Benning and Camp Lejeune. Besides intensive and extensive excavations of root systems of trees 5 to 50 years old, this work will also use ground-penetrating radar to measure root biomass. This research will help answer questions about longleaf pine's ability to sequester carbon and allow researchers to predict longleaf carbon sequestration capabilities.

SRS scientists will lead efforts to quantify both longleaf pine root decomposition rates and the importance of black carbon (residue after biomass burning) in carbon sequestration. Longleaf pine is a fire-adapted species and frequent prescribed fire is integral to its successful management. Such fire deposits "black carbon" in the form of charcoal and soot - forms of carbon that persist for up to centuries in forest soil. SRS researchers John Butnor and Chris Maier, Ph.D., are co-investigators on the study.

Tim Martin, Ph.D., tree physiologist and director of the Carbon Resources Science Center at the University of Florida, and his colleagues will combine data from the research project with SRS experimental forest data and published scientific literature to modify models that DOD land managers can use to manage their longleaf pine forest resource. The carbon cycle models will help forest managers simulate scenarios for young planted longleaf pine stands and a single-tree-based model that can simulate older (40 to >200 years) longleaf pine stands.

###

SRS is comprised of about 120 Forest Service scientists and several hundred support staff who conduct natural resource research in 20 locations across 13 Southern states (Virginia to Texas). The Station's mission is "…to create the science and technology needed to sustain and enhance southern forest ecosystems and the benefits they provide." Learn more about SRS at: http://www.srs.fs.usda.gov/.


Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.