News Release

10-minute plasma treatment improves organic memory performance

Peer-Reviewed Publication

American Institute of Physics

Washington, D.C. (October 19, 2010) -- In its current early stage of development, digital memory circuits that use organic elements instead of silicon or other inorganic materials have a seemingly endless list of variables and options to consider, test, and optimize. While organic electronics are immediately attractive for their potential for extremely low cost and flexible substrates, many design aspects that are now taken for granted in the mature silicon-circuit world must be examined anew from the ground up.

A group led by Takhee Lee from Korea's Gwangju Institute of Science and Technology has demonstrated an optimal combination of materials and processing for a resistive memory circuit design. With a specific composite polymer located between two aluminum contacts as their on-off memory element, the scientists showed that exposing the contacts to an oxygen plasma for a mere 10 minutes prior to constructing the memory cell improved the ratio of on-to-off signal more than 10-fold, to more than 10,000. A larger ratio enables higher circuit performance.

"This simple plasma treatment is very cost-effective compared with alternatives, and improved the operation enough to enable high-performance memory devices, " said Byungjin Cho, lead author of the technical report that appeared in August 16 edition of Applied Physics Letters, which is published by the American Institute of Physics. In addition to the on/off ratio, Cho added that other qualities such as switching speed and endurance, data retention and environmental durability must also be investigated and improved before organic memory chips would become practical. Different organic materials may also require their own solutions as well, he added.

###

The article, "Electrical characterization of organic resistive memory with interfacial oxide layers formed by O2 plasma treatment" by Byungjin Cho, Sunghoon Song, Yongsung Ji and Takhee Lee is published in the journal Applied Physics Letters. See: http://link.aip.org/link/applab/v97/i6/p063305/s1

Journalists may request a free PDF of this article by contacting jbardi@aip.org

Funding: By the National Research Laboratory program; National Core Research Center grant; World Class University program of the Korean Ministry of Education, Science and Technology; the Program for Integrated Molecular Systems/GIST; and the IT R&D program of MKE/KEIT.

ABOUT APPLIED PHYSICS LETTERS

Applied Physics Letters, published by the American Institute of Physics, features concise, up-to-date reports on significant new findings in applied physics. Emphasizing rapid dissemination of key data and new physical insights, Applied Physics Letters offers prompt publication of new experimental and theoretical papers bearing on applications of physics phenomena to all branches of science, engineering, and modern technology. Content is published online daily, collected into weekly online and printed issues (52 issues per year). See: http://apl.aip.org/

ABOUT AIP

The American Institute of Physics is a federation of 10 physical science societies representing more than 135,000 scientists, engineers, and educators and is one of the world's largest publishers of scientific information in the physical sciences. Offering partnership solutions for scientific societies and for similar organizations in science and engineering, AIP is a leader in the field of electronic publishing of scholarly journals. AIP publishes 12 journals (some of which are the most highly cited in their respective fields), two magazines, including its flagship publication Physics Today; and the AIP Conference Proceedings series. Its online publishing platform Scitation hosts nearly two million articles from more than 185 scholarly journals and other publications of 28 learned society publishers.


Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.