News Release

2 Caltech researchers receive DARPA Young Faculty Awards

Grant and Award Announcement

California Institute of Technology

Julia Greer, California Institute of Technology

image: Caltech assistant professor Julia Greer receives a DARPA Young Faculty Award from DARPA director Regina E. Dugan (PhD '93) and deputy director Kaigham J. Gabriel. view more 

Credit: Julia Greer/Caltech

PASADENA, Calif.—The Defense Advanced Research Projects Agency (DARPA) has selected two researchers from the California Institute of Technology (Caltech) to participate in its Young Faculty Award (YFA) program.

Julia R. Greer, assistant professor of materials science, and Doris Tsao, assistant professor of biology, are among the 33 "rising stars" from 24 U.S. universities who each will receive grants of approximately $300,000 to develop and validate their research ideas over the next 24 months.

Greer joined the Caltech faculty in the Division of Engineering and Applied Science (EAS) in 2007 after receiving her PhD from Stanford University in 2005. In 2008, Greer made Technology Review's list of the world's top innovators under the age of 35 for her work with materials at the nanoscale level. In 2008, she received a Faculty Early Career Development award from the National Science Foundation.

Greer's YFA project is aimed at understanding and subsequently mimicking the superior mechanical robustness and strength of naturally occurring protective layers—such as nacre, or mother of pearl, a composite produced by some mollusks to line their inner shell—to create strong, ductile, damage-tolerant materials that maintain a relatively low density.

"Drawing inspiration from hard biological systems will allow us to gain insight into new physical phenomena operating in these materials, and to subsequently create innovative material systems with greatly amplified mechanical properties dictated by the choice of individual components, specific geometries, and microstructure in a truly across-scales fashion," says Greer.

One key objective of the work will be to fabricate a "brick-and-mortar" architecture using tiny plates of a metallic glass and ultrafine-grained ductile metal with nanoscale dimensions; this hierarchical architecture could then be used to fabricate new engineering composites with amplified strength and ductility. "Greer's nature-inspired work exemplifies the cutting-edge resea

###


Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.