News Release

Ideal nanoparticle cancer therapies surf the bloodstream

Peer-Reviewed Publication

American Institute of Physics

November 9, 2009 -- Eric Shaqfeh studies blood at Stanford University, using computer models that simulate how the fluid and the cells it contains move around. On November 11 at a meeting of the scientific society AVS, he will present his latest unpublished findings from two studies. One shows how components in blood line up to prepare for healing; the other demonstrates the best shape to use for man-made nanoparticles that target cancers -- a surfboard.

The different components that move through our blood stream are not evenly distributed. For years, scientists have known that platelets -- which help blood to clot -- stay close to the walls of blood vessels as they circulate.

"When somebody cuts himself, the fact that the platelets are sitting seven times more frequently at the edges of the little blood vessels is critical," says Shaqfeh.

His models suggest that when a new platelet is made, it takes longer than expected to migrate to and line up at the edge -- as much as ten or fifteen minutes to establish "hemostatis," in which blood cells are properly distributed in the body. The research, funded by the Army, suggests that current techniques for blood transfusions may not be ideal. Freezing platelets, which is common practice, may change their shape and disrupt their movements, and there may be better ways to give transfusions that establish the proper blood arrangement faster, says Shaqfeh.

In related work, Shaqfeh added tiny nanoparticles of various sizes and shapes into his blood models. Such particles are of interest to the cancer researchers, who hope to use nanoparticles to target the walls of blood vessels that feed tumors. Shaqfeh found that surfboard-shaped particles stayed closest to the walls of blood vessels. He will soon be working with another group to test fluorescent surfboard-shaped particles in actual blood vessels to see how they behave.

###

The talk "The Microfluidics of NonSpherical Colloidal Particles and Vesicles with Application to Blood Additives" is at 11:20 a.m. on Wednesday, November 11, 2009. Abstract: http://www.avssymposium.org/Open/SearchPapers.aspx?PaperNumber=IJ+BI+MN-WeM-11

INFORMATION FOR JOURNALISTS

The AVS 56th International Symposium & Exhibition lasts from November 8-13, 2009 in San Jose, CA. All meeting information, including directions to the San Jose Convention Center is at: http://www2.avs.org/symposium/

Staff reporters and freelance journalists working on assignment for major media outlets are invited to attend the conference free of charge. Journalist registration instructions can be found at: http://www.avs.org/pdf/pressinvite.pdf

USEFUL LINKS

Online press room: http://www.avs.org/inside.press.aspx

Searchable abstracts: http://www.avssymposium.org/Open/SearchPapers.aspx

Full meeting program: http://www.avssymposium.org/Overview.aspx

Main meeting page: http://www2.avs.org/symposium/AVS56/pages/info.html

ONSITE MEETING PRESS ROOM

The AVS press room will be located in Concourse 1 of the San Jose Convention Center. Press room hours are Monday-Thursday, 8:00-5:00 pm. The phone number there is 408-271-6100. Press Kits containing company product announcements and other news will be available on CD-ROM in the press room.

ABOUT AVS

As a professional membership organization, AVS fosters networking within the materials, processing, and interfaces community at various local, national or international meetings and exhibits throughout the year. AVS publishes four journals, honors and recognizes members through its prestigious awards program, offers training and other technical resources, as well as career services.


Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.