News Release

Impaired transport in neurons triggers prion disease

Peer-Reviewed Publication

PLOS

A new study shows that nervous system integrity and axonal properties may play a key role in prion diseases. The findings, from researchers at the Rudolf Virchow Center and the Institute of Virology of the University of Würzburg, expand our understanding of the development of prion disease and suggest novel targets for therapeutic and diagnostic approaches in its early stages. Details are published August 21 in the open-access journal PLoS Pathogens.

Despite growing awareness of prion diseases, such as bovine spongiform encephalopathy (BSE) and the human variant, Creutzfeldt-Jakob disease, the molecular mechanisms responsible for their development are still not completely understood. These diseases are associated with neuropathological symptoms that include dementia, motor system defects and amnesia, although previous observations identified molecular hallmarks in the absence of these neuropathological symptoms, creating a paradox. The recent work of Vladimir Ermolayev and colleagues helps resolve this paradox, bringing new insights into the key factors triggering the onset of the clinical disease.

Impaired axonal transport is known to be involved in the development of neurodegenerative disorders like Alzheimer's or Parkinson's diseases. Previously, prion infections were shown to cause spongiform vacuolations, axonal swellings and accumulation of amyloid protein fibrils. Impaired axonal transport had not been observed so far. To monitor the axonal transport, Ermolayev and co-authors injected special dyes into mouse motor neurons, using a combination of confocal and novel ultramicroscopy techniques to monitor the dye delivery to the neurons and characterize the functional properties of axonal transport.

After prion injection into the brain and motor neuron system, Ermolayev and colleagues observed the described clinical symptoms. When clinical symptoms occurred, the researchers found a clearly reduced axonal transport in the neurons of two brain centers, the red nucleus and the motor cortex. Axonal transport impairments were seen in 45 per cent of neurons in the red nucleus and up to 94 per cent of motor cortex neurons.

"These results will help us to find better ways for diagnosis and treatment of prion diseases," says Dr. Vladimir Ermolayev.

###

FINANCIAL DISCLOSURE: This research was funded by the German Research Foundation (DFG) to E.F. (Emmy Noether Program FL387/1-2), to M.K. and E.F. (SFB581, TP-A6), and to G.H. (FZ-82), and by the European Commission, 6th Framework Program, to T.C. (ZNIP-037783). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

COMPETING INTERESTS: The authors have declared that no competing interests exist.

PLEASE ADD THIS LINK TO THE PUBLISHED ARTICLE IN ONLINE VERSIONS OF YOUR REPORT: http://dx.plos.org/10.1371/journal.ppat.1000558

CITATION: Ermolayev V, Cathomen T, Merk J, Friedrich M, Ha¨rtig W, et al. (2009) Impaired Axonal Transport in Motor Neurons Correlates with Clinical Prion Disease. PLoS Pathog 5(8): e1000558. doi:10.1371/journal.ppat.1000558

CONTACT:

Sonja Jülich-Abbas
Leiterin Presse- und Öffentlichkeitsarbeit Rudolf-Virchow-Zentrum/ DFG-Forschungszentrum für Experimentelle Biomedizin der Universität Würzburg
Tel: 0931-201-48714
Email: sonja.juelich@virchow.uni-wuerzburg.de

Disclaimer

This press release refers to an upcoming article in PLoS Pathogens. The release is provided by the article authors and their institutions. Any opinions expressed in these releases or articles are the personal views of the journal staff and/or article contributors, and do not necessarily represent the views or policies of PLoS. PLoS expressly disclaims any and all warranties and liability in connection with the information found in the releases and articles and your use of such information.

About PLoS Pathogens

PLoS Pathogens (www.plospathogens.org) publishes outstanding original articles that significantly advance the understanding of pathogens and how they interact with their host organisms. All works published in PLoS Pathogens are open access. Everything is immediately available subject only to the condition that the original authorship and source are properly attributed. Copyright is retained by the authors. The Public Library of Science uses the Creative Commons Attribution License.

About the Public Library of Science

The Public Library of Science (PLoS) is a non-profit organization of scientists and physicians committed to making the world's scientific and medical literature a freely available public resource. For more information, visit http://www.plos.org.


Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.