News Release

At the fungal farmer's market, only the best cyanobacteria are for sale

Lichen study has implications for ecosystem research

Peer-Reviewed Publication

Botanical Society of America

Cyanobacterial Photobionts of Tropical Cyanolichens

image: Cyanobacterial photobionts of tropical cyanolichens of the genera Acantholichen, Coccocarpia, Dictyonema, and Stereocaulon, belong to a previously unrecognized, exclusively lichenized, novel lineage with the name Rhizonema. These photobionts are shared between unrelated lichen mycobionts co-occurring in the same habitats, leading to improved strains by means of mycobiont and environmental selection, in a similar way as farmers domesticate and improve crops. view more 

Credit: Courtesy of Robert K. Lucking.

Lichens are the classic example of a symbiotic relationship. Both the fungal and photobiont components of the lichen benefit from the relationship and often are unable to survive without each other. Recent research by Dr. Robert Lücking (The Field Museum, Chicago), Dr. James Lawrey (George Mason University, Virginia) and a team of colleagues from around the world has put a new spin on this relationship.

In a paper published in the August 2009 issue of the American Journal of Botany (www.amjbot.org/cgi/content/full/96/8/1409), Lücking et al. explore the possibility of lichens as domesticators, similar to early farmers domesticating grains. By investigating the evolutionary history of a group of cyanobacteria associated with lichens, Lücking and Lawrey and their team have made some surprising conclusions.

Although lichen fungi represent more than 1000 genera, most are associated with photobionts that represent only four genera, one of them believed to be the common and widely distributed cyanobacterial genus Scytonema. However, the identity of photobionts thought to be Scytonema has never been confirmed. Lücking and his colleagues used DNA sequence data to reconstruct evolutionary relationships among free-living members of Scytonema and putative Scytonema photobionts associated with three major fungal lineages.

They discovered that these lichenized photobionts are not members of the genus Scytonema, but form a novel, previously unrecognized, entirely lichenized, lineage of cyanobacteria. The members of this novel lineage, which bears the name Rhizonema, physically appear very similar to free-living members of the genus Scytonema, and members of the two genera can be found close to each other—one lichenized, the other not. Apart from being the first discovery of a completely novel photobiont lineage in lichens using molecular phylogenetics, this find has important implications for ecosystem research because a large proportion of nitrogen-fixing cyanobacteria previously believed to occur in both lichenized and free-living forms now appear to be restricted to lichen symbioses.

Lücking et al. also found that a wide range of lichen fungi that are distantly related with each other but co-occur in the same habitats are associated with members of Rhizonema. This implies that the fungi "share" the cyanobacteria among them, as opposed to evolving in concert with the cyanobacteria, a process that would result in similar evolutionary patterns in the fungal and cyanobacterial components of the lichen.

The authors propose that photobionts are selected based on their compatibility with the mycobionts and their ability to contribute to the establishment and growth of the lichen. This results in an increase in the frequency of particular mycobiont-photobiont pairs, and likewise an increase in the frequency of particular photobionts, which then leads to an increase in the availability of these photobiont strains for other lichen associations. This process may be compared to crop domestication, where farmers develop improved crop varieties and share them with other farmers, leading to higher yields for the farmers and proliferation of the most widely-used varieties. Indeed, the North American lichenologist Trevor Goward has defined lichens as "fungi that discovered agriculture," and this study not only supports this view but adds a further dimension to it.

###

NOTE: A hi-res digital color image is available by request.

The full article is available for no charge for 30 days following the date of this summary at www.amjbot.org/cgi/content/full/96/8/1409. After this date, reporters may contact Richard Hund at ajb@botany.org for a copy of the article.

The Botanical Society of America (www.botany.org) is a non-profit membership society with a mission to promote botany, the field of basic science dealing with the study and inquiry into the form, function, development, diversity, reproduction, evolution, and uses of plants and their interactions within the biosphere. It has published the American Journal of Botany (www.amjbot.org) for nearly 100 years. In 2009, the Special Libraries Association named the American Journal of Botany one of the Top 10 Most Influential Journals of the Century in the field of Biology and Medicine.

For further information, please contact the AJB staff at ajb@botany.org.


Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.