News Release

A new take on growth factor signaling in tamoxifen resistance

Peer-Reviewed Publication

BMC (BioMed Central)

Differences in growth factor (GF) signaling may cause the poor prognosis in some breast cancer cases. A new study, published in the open access journal BMC Medical Genomics, suggests that some estrogen receptor-positive breast cancers respond poorly to tamoxifen because of increased GF signaling.

Sherene Loi, from the Peter MacCallum Cancer Centre, Melbourne, worked with a team of Australian and Belgian researchers to investigate the differences between those estrogen receptor positive (ER+) cancers that respond well to tamoxifen (luminal-A) and those that do not (luminal-B). She said, "This is the first study specifically investigating the biology of the luminal-B, ER+ breast cancer subtype. We propose that activation of GF signaling contributes to this highly proliferative, relatively tamoxifen-insensitive, phenotype and that this exists independently of HER2 overexpression. Targeting this pathway and its upstream mediators could prove to be a useful therapeutic strategy".

The researchers used a new computational method of analysis of gene expression data called gene set enrichment analysis (GSEA) to determine that there is increased growth factor activation from the gene expression profiles of nearly 100 luminal-B breast cancers samples. They then validated this finding by showing that treatment with the growth factor heregulin, which induced growth factor signaling an in-vitro model, could overcome tamoxifen-induced cell cycle arrest.

This research represents a departure from the informative, but sometimes not terribly useful, process of identifying genes associated with given conditions. Dr Loi said, "Although gene expression data has demonstrated its ability to identify subsets of disease and predict outcomes or drug responses, identifying new therapeutic approaches based on whole genome microarray profiling has, to date, been a significant challenge. By using GSEA, we've been able to use gene expression data to identify that activation of GF signaling pathways as a possible therapeutic target for further exploration in the clinical setting for these particular breast cancer patients".

###

Notes to Editors

1. Gene expression profiling identifies activated growth factor signaling in poor prognosis (Luminal-B) estrogen receptor positive breast cancer
Sherene Loi, Christos Sotiriou, Benjamin Haibe-Kains, Francoise Lallemand, Nelly M Conus, Martine J Piccart, Terence P Speed and Grant A McArthur
BMC Medical Genomics (in press)

During embargo, article available here: http://www.biomedcentral.com/imedia/1189951981258437_article.pdf?random=294374
After the embargo, article available at journal website: http://www.biomedcentral.com/bmcmedgenomics/

Please name the journal in any story you write. If you are writing for the web, please link to the article. All articles are available free of charge, according to BioMed Central's open access policy.

Article citation and URL available on request at press@biomedcentral.com on the day of publication

2. BMC Medical Genomics is an open access journal publishing original peer-reviewed research articles in all aspects of functional genomics, genome structure, genome-scale population genetics, epigenomics, proteomics, systems analysis, and pharmacogenomics in relation to human health and disease. BMC Medical Genomics (ISSN 1755-8794) is indexed/tracked/covered by PubMed, BIOSIS, CAS and Google Scholar.

3. BioMed Central (http://www.biomedcentral.com/) is an STM (Science, Technology and Medicine) publisher which has pioneered the open access publishing model. All peer-reviewed research articles published by BioMed Central are made immediately and freely accessible online, and are licensed to allow redistribution and reuse. BioMed Central is part of Springer Science+Business Media, a leading global publisher in the STM sector.


Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.