News Release

Alzheimer's disease linked to mitochondrial damage

Free radicals generated by beta-amyloid proteins lead to mitochondrial fragmentation

Peer-Reviewed Publication

Sanford Burnham Prebys

LA JOLLA, Calif., April 3, 2009 -- Investigators at Burnham Institute for Medical Research (Burnham) have demonstrated that attacks on the mitochondrial protein Drp1 by the free radical nitric oxide—which causes a chemical reaction called S-nitrosylation—mediates neurodegeneration associated with Alzheimer's disease. Prior to this study, the mechanism by which beta-amyloid protein caused synaptic damage to neurons in Alzheimer's disease was unknown. These findings suggest that preventing S-nitrosylation of Drp1 may reduce or even prevent neurodegeneration in Alzheimer's patients. The paper was published in the April 3 issue of the journal Science.

The team of scientists, led by neuroscientist and clinical neurologist Stuart A. Lipton, M.D., Ph.D., director of the Del E. Webb Center for Neuroscience, Aging and Stem Cell Research, showed that S-nitrosylated Drp1 (SNO-Drp1) facilitates mitochondrial fragmentation, damaging regions of nerve cell communication called synapses. Mitochondria are the energy storehouses of the cell, and their compromise by excessive fragmentation causes synaptic injury and eventual nerve cell death. Synapses are critical for learning and memory and their impairment leads to the dementia seen in Alzheimer's patients.

"We now have a better understanding of the mechanism by which beta-amyloid protein causes neurodegeneration in Alzheimer's disease," said Dr. Lipton. "We found that beta-amyloid can generate nitric oxide that reacts with Drp1. By identifying Drp1 as the protein responsible for synaptic injury, we now have a new target for developing drugs that may slow or stop the progression of Alzheimer's."

Drp1 is an enzyme that mediates fission or fragmentation of mitochondria. The Burnham researchers showed that excessive production of nitric oxide caused S-nitrosylation of Drp1 and induced excessive fragmentation of mitochondria in cultured nerve cells or neurons. The scientists also showed that beta-amyloid protein multimers, which had been previously implicated in Alzheimer's disease, induced formation of SNO-Drp1. Importantly, elevated SNO-Drp1 levels were also found in human brains of Alzheimer's patients, but not in those with Parkinson's disease or controls who didn't have neurodegenerative diseases.

Molecular modeling performed by the team suggested that S-nitrosylation of Drp1 causes dimerization of the protein and activation of enzymatic activity that induces mitochondrial fragmentation. To confirm this hypothesis, the scientists showed that RNA interference to knock down Drp1 or a mutation that prevented Drp1 activity inhibited excess mitochondrial fragmentation and protected the neurons. Finally, the researchers showed that a mutated Drp1, lacking the nitrosylation site, did not induce mitochondrial fragmentation and also prevented neuronal damage. Taken together, these findings suggest that multimers of beta-amyloid protein induce generation of nitric oxide, which reacts with Drp1 to cause excessive mitochondrial fragmentation and in turn neuronal damage.

###

About Burnham Institute for Medical Research

Burnham Institute for Medical Research is dedicated to revealing the fundamental molecular causes of disease and devising the innovative therapies of tomorrow. Burnham, with operations in California and Florida, is one of the fastest-growing research institutes in the country. The Institute ranks among the top-four institutions nationally for NIH grant funding and among the top-25 organizations worldwide for its research impact. Burnham utilizes a unique, collaborative approach to medical research and has established major research programs in cancer, neurodegeneration, diabetes, infectious and inflammatory and childhood diseases. The Institute is known for its world-class capabilities in stem cell research and drug discovery technologies. Burnham is a nonprofit, public benefit corporation. For more information, please visit www.burnham.org.


Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.