News Release

Robots show that brain activity is linked to time as well as space

Peer-Reviewed Publication

PLOS

Humanoid robots have been used to show that that functional hierarchy in the brain is linked to time as well as space. Researchers from RIKEN Brain Science Institute, Japan, have created a new type of neural network model which adds to the previous literature that suggests neural activity is linked solely to spatial hierarchy within the animal brain. Details are published November 7 in the open-access journal PLoS Computational Biology.

An animal's motor control system contains a functional hierarchy, whereby small, reusable parts of movements are flexibly integrated to create various action sequences. For example, the action of drinking a cup of coffee can be broken down into a combination of small movements including the motions of reaching for a cup, grasping the cup, and bringing it to one's mouth.

Earlier studies suggested that this functional hierarchy results from an explicit spatial hierarchical structure, but this has not been seen in anatomical studies of the brain. The underlying neural mechanisms for functional hierarchy, thus, had not yet been definitively determined.

In this study, Yuichi Yamashita and Jun Tani demonstrate that even without explicit spatial hierarchical structure a, functional hierarchy can self-organize through multiple timescales in neural activity. Their model was proven viable when tested with the physical body of a humanoid robot. Results suggest that it is not only the spatial connections between neurons, but also the timescales of neural activity, that act as important mechanisms in neural systems.

###

PLEASE ADD THIS LINK TO THE PUBLISHED ARTICLE IN ONLINE VERSIONS OF YOUR REPORT: http://www.ploscompbiol.org/doi/pcbi.1000220 (link will go live on Friday, November 7)

CITATION: Yamashita Y, Tani J (2008) Emergence of Functional Hierarchy in a Multiple Timescale Neural Network Model: A Humanoid Robot Experiment. PLoS Comput Biol 4(11): e1000220. doi:10.1371/journal.pcbi.1000220

CONTACT:

Jun Tani
tani@brain.riken.jp

Yuichi Yamashita
yamay@brain.riken.jp

Lab. for Behavior and Dynamic Cognition
RIKEN Brain Science Institute
2-1 Hirosawa, Wako-shi, Saitama, 351-0198 Japan
Tel: +81-48-467-6467


Disclaimer

This press release refers to an upcoming article in PLoS Computational Biology. The release is provided by the article authors. Any opinions expressed in this release or article are the personal views of the journal staff and/or article contributors, and do not necessarily represent the views or policies of PLoS. PLoS expressly disclaims any and all warranties and liability in connection with the information found in the releases and articles and your use of such information.

About PLoS Computational Biology

PLoS Computational Biology (www.ploscompbiol.org) features works of exceptional significance that further our understanding of living systems at all scales through the application of computational methods. All works published in PLoS Computational Biology are open access. Everything is immediately available subject only to the condition that the original authorship and source are properly attributed. Copyright is retained by the authors. The Public Library of Science uses the Creative Commons Attribution License.

About the Public Library of Science

The Public Library of Science (PLoS) is a non-profit organization of scientists and physicians committed to making the world's scientific and medical literature a freely available public resource. For more information, visit http://www.plos.org.


Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.