News Release

NSF awards two grants to Stevens for nano/micro device fabrication and nano sensor development

Grants will support research and training in fabrication of micro/nanoscale sensors, actuators and devices, and the development of nano acoustic emission sensors

Grant and Award Announcement

Stevens Institute of Technology

HOBOKEN , N.J. – A team from Stevens Institute of Technology has been awarded a grant from the National Science Foundation for the project, "MRI: Acquisition of an Inductively Coupled Plasma Etching System for Nano/Micro Device Fabrication." The Stevens team includes Yong Shi, the PI, an Assistant Professor in the Mechanical Engineering department; Stefan Strauf, a Professor the Physics department; Eui-Hyeok Yang, an Associate Professor in the Mechanical Engineering department; Frank Fisher, an Associate Professor in the Nanomechanics and Nanomaterials Lab in the Mechanical Engineering department; and Chang-Hwan Choi, an Assistant Professor in the Mechanical Engineering department. The team also includes Professor Adeniyi Lawal (Chemical Engineering); Professors Hongjun Wang and Xiaojun Yu (Biomedical Engineering); and Dr. Daizong Li (Design and Manufacturing Institute)

The grant will be awarded over three years to support the project's objective, which is to achieve uniform and highly selective anisotropic etching capabilities for research and training in fabrication of micro/nanoscale sensors, actuators and devices at Stevens. By using an Inductively Coupled Plasma (ICP) etching system, the team can greatly augment existing micro/nano fabrication capabilities within the MicroDevices Laboratory. This will have a significant impact on research already being conducted at Stevens, such as nano and micro devices for sensing , communications and medicine , single-electron carbon nanotube memory devices, nanoengineered surfaces for microfluidic and nanobioscience applications, and bottom-up prototyping of microchemical systems .

Shi was awarded an additional three-year grant of $230,900 for his work, " Nano AFCs Acoustic Emission Sensors for Real-time Monitoring of Structures." The objective of the proposed research is to apply innovative nanotechnologies for creating acoustic emission (AE) sensors for real-time monitoring of structures. The proposed AE sensors are composed of Nanoscale Active Fiber Composites (NAFCs) and the project involves the design, manufacturing and characterization of the sensors consisting of piezoelectric (PZT) nanofibers. This work will result in advanced acoustic emission sensors with high sensitivity, excellent conformability and suitability for being imbedded into or attached on the surface of structures.

###

About Stevens Institute of Technology

Founded in 1870, Stevens Institute of Technology is one of the leading technological universities in the world dedicated to learning and research. Through its broad-based curricula, nurturing of creative inventiveness, and cross disciplinary research, the Institute is at the forefront of global challenges in engineering, science, and technology management. Partnerships and collaboration between, and among, business, industry, government and other universities contribute to the enriched environment of the Institute. A new model for technology commercialization in academe, known as Technogenesis®, involves external partners in launching business enterprises to create broad opportunities and shared value.

Stevens offers baccalaureates, master's and doctoral degrees in engineering, science, computer science and management, in addition to a baccalaureate degree in the humanities and liberal arts, and in business and technology. The university has a total enrollment of 2,040 undergraduate and 3,085 graduate students, and a worldwide online enrollment of 2,250, with a full-time tenured/tenure-track faculty of 140 and more than 200 full-time special faculty. Stevens' graduate programs have attracted international participation from China, India, Southeast Asia, Europe and Latin America. Additional information may be obtained from its web page at www.stevens.edu.

For the latest news about Stevens, please visit StevensNewsService.com.


Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.