News Release

A green solution to biofuel production

Peer-Reviewed Publication

Society for Experimental Biology

Biofuels

image: The scientists have delivered economic improvements in the production of enzymes required for biofuel generation. view more 

Credit: Zivko Nikolov

With the current drive towards production of alternative fuels from plant material, enzymes which can break down this material into useable compounds are required in industrial quantities and at a low cost. One group of scientists from Texas A&M University have come up with a solution: using plants to make the enzymes. Professor Zivko Nikolov, who leads the Bioseparations Lab, will describe their research on Monday 7th July at the Society for Experimental Biology's Annual Meeting in Marseille [Session P2].

Traditional methods of generating enzymes for biofuel production currently operate at over five times the target cost required to make the fuels financially competitive. By using plants which have been engineered to make the proteins, Professor Nikolov believes that the target can be met. His group, which has expertise in the development of economic processing techniques, have designed processing strategies which allow multiple products to be obtained from each crop, making the whole process more economically viable. "One of our projects focuses on producing cellulases, enzymes which can break down biomass, in maize seed. By carefully designing the processing chain, from a single crop of maize we can deliver oil that can be turned into biodiesel, cellulose that can be used to make other biofuels, and fibre and protein which can be used as animal feed, as well, of course as the enzymes themselves," he reveals. "These multiple products offset the outlay on the enzyme purification process, meaning we can make enzymes far more cost-effectively than is achievable using traditional fermentation methods, a result which we can also see in a similar sugarcane processing project."

In the 1990s there was much interest in using plants to make both industrial enzymes and pharmaceuticals, but in the last five years such industrial enzyme developments have gone out of fashion, largely due to production costs that simply weren't viable, combined with public unease. Now Professor Nikolov's group have brought this technology back into the picture. "The economic improvements that we have delivered to the processing pathway, combined with a greater public acceptance of transgenic plants, mean that we can now develop the full potential of this technology. This in turn will bring us a step closer to the vital challenge of generating cheap alternative fuels over the coming decades," he concludes.

###

Notes for editors

  • Cellulases are enzymes which can break down cellulose, a major component of plant biomass
  • An image is available

SEB Press Officer

Holly Astley
Telephone: 07792 855 259
E-mail: hma25@cam.ac.uk

Direct scientist contact

During meeting via the SEB Press Officer or email: znikolov@tamu.edu
Before meeting (until 4th July): Telephone: 00 1 979 458 0763
E-mail: znikolov@tamu.edu

This work will be presented on Monday 7th July at 16.05pm at the Society for Experimental Biology's Annual Meeting (6th – 10th July 2008) at Parc Chanot, Marseille, France.

Journalists are welcome to attend the meeting. For full details of the programme please visit: http://www.sebiology.org/meetings/Marseille/Programme_by_day.html


Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.