News Release

Researchers explore the genetic basis of social behavior in ants

Peer-Reviewed Publication

PLOS

Understanding how interactions between genes and the environment influence social behavior is a fundamental research goal. In a new study, researchers at the University of Lausanne and the University of Georgia have shed light on the numbers and types of genes that may control social organization in fire ant colonies.

Published July 18th in the open-access journal PLoS Genetics, this work suggests that a relatively small number of genes, many of which are predicted to play a role in chemical communication, determine social organization. This research also increases our understanding of how the social environment can indirectly influence the expression of socially relevant traits.

The fire ant Solenopsis invicta displays natural variation in the number of queens per colony. While the colony-level phenotype results from the aggregation of individuals' behavior, it seems to be regulated by one genomic region marked by the gene Gp-9. This genetic factor also determines whether workers tolerate a single fertile queen (monogene social form) or multiple queens (polygene social form) in their colony.

The current study found that 39 genes are differentially expressed between workers with different Gp-9 genotypes, including several genes likely to regulate chemical signaling and response. The chemical communication mediated by these gene products is essential to the regulation of colony queen number and social organization.

The study also identified 91 genes that are indirectly influenced by the social environment, including Gp-9 genotypes of nest mates, a finding that demonstrates how specific social environments can modulate individual gene expression in group members. This research hints at the genetic complexities likely to be found in other social animals, and represents an important step in the detailed genetic analysis of social behavior.

###

PLEASE ADD THIS LINK TO THE PUBLISHED ARTICLE IN ONLINE VERSIONS OF YOUR REPORT: http://www.plosgenetics.org/doi/pgen.1000127 (link will go live on Friday, July 18)

CITATION: Wang J, Ross KG, Keller L (2008) Genome-Wide Expression Patterns and the Genetic Architecture of a Fundamental Social Trait. PLoS Genet 4(7): e1000127. doi:10.1371/journal.pgen.1000127

CONTACT:

Laurent Keller
(co-author/group leader)
41 21 692 41 73
Laurent.Keller@unil.ch


Disclaimer

This press release refers to an upcoming article in PLoS Genetics. The release is provided by the article authors. Any opinions expressed in this release or article are the personal views of the journal staff and/or article contributors, and do not necessarily represent the views or policies of PLoS. PLoS expressly disclaims any and all warranties and liability in connection with the information found in the releases and articles and your use of such information.

About PLoS Genetics

PLoS Genetics (http://www.plosgenetics.org) reflects the full breadth and interdisciplinary nature of genetics and genomics research by publishing outstanding original contributions in all areas of biology. All works published in PLoS Genetics are open access. Everything is immediately and freely available online throughout the world subject only to the condition that the original authorship and source are properly attributed. Copyright is retained by the authors. The Public Library of Science uses the Creative Commons Attribution License.

About the Public Library of Science

The Public Library of Science (PLoS) is a non-profit organization of scientists and physicians committed to making the world's scientific and medical literature a freely available public resource. For more information, visit http://www.plos.org.


Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.