News Release

Engineers demonstrate a new type of optical tweezer

Microfabricated optical tweezer has the potential to make biological and microfluidic force measurements in integrated systems such as microfluidic chips

Peer-Reviewed Publication

Harvard University

Microfabricated Fresnel Zone Plate Optical Tweezer

image: (a). Photograph of microfabricated Fresnel Zone Plate optical tweezer, consisting of concentric gold rings (50 nm thick) on a microscope slide. The Zone Plate outer diameter is 100¼m, and the focal length is 8¼m. (b). CCD camera image of fluorescent bead (2¼m diameter) trapped in Zone Plate focus. view more 

Credit: Ken Crozier, Harvard School of Engineering and Applied Sciences

CAMBRIDGE, Mass. -- February 25, 2008 -- Researchers at the Harvard School of Engineering and Applied Sciences (SEAS) demonstrated a new type of optical tweezer with the potential to make biological and microfluidic force measurements in integrated systems such as microfluidic chips. The tweezer, consisting of a Fresnel Zone Plate microfabricated on a glass slide, has the ability to trap particles without the need for high performance objective lenses.

The device was designed, fabricated, and tested by postdoctoral fellow Ethan Schonbrun and undergraduate researcher Charles Rinzler under the direction of Assistant Professor of Electrical Engineering Ken Crozier (all are affiliated with SEAS). The team's results were published in the February 18th edition of Applied Physics Letters and the researchers have filed a U.S. provisional patent covering this new device.

"The microfabricated nature of the new optical tweezer offers an important advantage over conventional optical tweezers based on microscope objective lenses," says Crozier. "High performance objective lenses usually have very short working distances -- the trap is often ~200 mm or less from the front surface of the lens. This prevents their use in many microfluidic chips since these frequently have glass walls that are thicker than this."

The researchers note that the Fresnel Zone Plate optical tweezers could be fabricated on the inner walls of microfluidic channels or even inside cylindrical or spherical chambers and could perform calibrated force measurements in a footprint of only 100x100μm.

Traditional tweezers, by contrast, would suffer from crippling aberrations in such locations. Moreover, in experimental trials, the optical tweezers exhibited trapping performance comparable to conventional optical tweezers when the diffraction efficiency was taken into account.

The researchers envision using their new tweezer inside microfluidic chips to carry out fluid velocity, refractive index, and local viscosity measurements. Additional applications include biological force measurements and sorting particles based on their size and refractive index. Particle-sorting chips based on large arrays of tweezers could be used to extract the components of interest of a biological sample in a high-throughput manner.

###

The work was supported by the Microsystems Technology Office of the Defense Advanced Research Projects Agency and the Harvard Nanoscale Science and Engineering Center of the National Science Foundation.


Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.