News Release

How actin networks are actin'

Peer-Reviewed Publication

PLOS

Dynamic networks of growing actin filaments are critical for many cellular processes, including cell migration, intracellular transport, and the recovery of proteins from the cell surface. In this week’s issue of the open-access journal PLoS Biology, researchers at Washington University in St. Louis shed light on how multiple proteins cooperate to regulate the assembly of such actin networks.

A central player in generating actin networks is the Arp2/3 complex. In most cells, there are multiple proteins that can regulate the function of the Arp2/3 complex, although how the activities of these proteins are coordinated in the cell to generate the appropriate network of actin filaments in a complex, multi-step process remains unclear. To better understand how multiple Arp2/3 regulatory proteins are coordinated in the cell, Brian Galletta, Dennis Chuang, and John Cooper used a combination of live-cell imaging, computer-aided particle tracking, and quantitative motion analysis to determine how disruption of the function of each of these regulatory proteins, individually and its combination, altered the movement of actin patches in bakers yeast.

These studies have revealed that while Arp2/3 regulatory proteins sometimes play overlapping roles in this process, they often play unique roles. The molecular machinery contained in actin patches can be found throughout nature. Therefore, Brian Galleta says that, “these studies should shed light on how actin networks are regulated in human cells during normal cell function and allow for a better understanding of how actin misregulation might contribute to the progression of disease processes including cancer, inflammation, and infection.”

###

Citation: Galletta BJ, Chuang DY, Cooper JA (2008) Distinct roles for Arp2/3 regulators in actin assembly and endocytosis. PLoS Biol 6(1): e001. doi:10.1371/journal.pbio.0060001

CONTACT:
John A. Cooper
Washington University
Division of Biology and Biomedical Sciences
St. Louis, MO 63110-1093
+1-314-362-4606
+1-314-362-7463 (fax)
jcooper@wustl.edu

All works published in PLoS Biology(www.plosbiology.org) are open access. Everything is immediately available—to read, download, redistribute, include in databases, and otherwise use—without cost to anyone, anywhere, subject only to the condition that the original authorship and source are properly attributed. Copyright is retained by the authors. The Public Library of Science uses the Creative Commons Attribution License.


Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.