News Release

Bird flu finds children's lungs faster

Peer-Reviewed Publication

BMC (BioMed Central)

New findings, reported in today in the online open access journal Respiratory Research, about how the virus binds to the respiratory tract and lung suggest children may be particularly susceptible to avian influenza,. The results also mean that previous receptor distribution studies may have to be re-evaluated.

John Nicholls and colleagues at the University of Hong Kong and Adelaide Women and Children's Hospital, in Australia, describe a modified technique to visualize the putative receptors for influenza viruses in the upper and lower respiratory tract, including the lung.

Sialic acid molecules on the cell surface act as chemical beacons for the influenza virus. Once the virus finds sialic acid, it can attach and infect the cell, although the precise distribution of sialic acid molecules affects how easily the virus can find host cells to infect.

The team has turned to lectins- molecules which bind sugars, to help them differentiate receptors for human and avian influenza viruses. The researchers used an improved staining technique to see how well two lectins, Sambucus nigra agglutinin (SNA) and Maackia amurensis agglutinin (MAA), bind to different forms of sialic acid on respiratory tract cells in healthy adults and children. SNA is particularly good at identifying the receptor for human influenza viruses while MAA identifies the receptor for avian viruses - including H5N1.

The researchers found that a particular form of MAA (MAA1) displayed widespread binding throughout the respiratory tract, but was particularly good at binding to children's cells in the lower respiratory tract as well as the upper respiratory tract of adults. Although this MAA1 binding is not unique for avian influenza receptors, these findings could explain how avian influenza infects children more readily than it does adults. This may explain previous findings from this group that avian H5N1 viruses can infect the human upper respiratory tract, even though these tissues were thought to lack receptors for these viruses.

"Understanding the how and why of avian virus infection of humans is a very complex process involving research into properties of H5N1 virus, the host receptor and the cellular response" said Dr John Nicholls. "We believe that the studies we have done investigating where the receptors are located and their distribution with age is a small step towards unravelling this process and help in finding ways to diminish the potential treat from this emerging infection."

###

Article:
Sialic acid receptor detection in the human respiratory tract: evidence for widespread distribution of potential binding sites for human and avian influenza viruses
John M Nicholls, Anthony J Bourne, Honglin Chen, Yi Guan and J S Malik Peiris
Respiratory Research (in press)

During embargo, article available at: http://respiratoryresearch.com/imedia/1511547665141184_article.pdf?rndom=130829

After the embargo, article available at: http://respiratory-research.com/

Article citation and URL available on request at press@biomedcentral.com on the day of publication

Please quote the journal in any story you write. If you are writing for the web, please link to the article. All articles are available free of charge, according to BioMed Central's Open Access policy.

For author contact details please contact Charlotte Webber (Press Office, BioMed Central)
Phone: +44 (0)207 631 9980
Email: press@biomedcentral.com

BioMed Central (http://www.biomedcentral.com) is an independent online publishing house committed to providing open access to peer-reviewed biological and medical research. This commitment is based on the view that immediate free access to research and the ability to freely archive and reuse published information is essential to the rapid and efficient communication of science.

BioMed Central currently publishes over 160 journals across biology and medicine. In addition to open-access original research, BioMed Central also publishes reviews, commentaries and other non-original-research content. Depending on the policies of the individual journal, this content may be open access or provided only to subscribers.


Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.