News Release

Computational actinide chemistry: Are we there yet?

Recent progress is revealing the secrets of heavy elements

Peer-Reviewed Publication

DOE/Pacific Northwest National Laboratory

Klaui Ligand

image: Researchers are identifying molecules such as the so-called Klaui ligand that can effectively extract uranium and other actinides from their natural environment. view more 

Credit: Pacific Northwest National Laboratory

BOSTON – Ever since the Manhattan project in World War II, actinide chemistry has been essential for nuclear science and technology. Yet scientists still seek the ability to interpret and predict chemical and physical properties of actinide compounds and materials using first principle theory. Computational actinide chemistry may bring that goal closer to achievement.

PNNL scientist Jun Li will provide an overview of developments in computational actinide chemistry at the national meeting of the American Chemical Society.

Progress in relativistic quantum chemistry, computer hardware and computational chemistry software has enabled computational actinide chemistry to emerge as a powerful and predictive tool for research in actinide chemistry.

“These discoveries will have deep impact for heavy-element science and will greatly improve the fundamental understanding of actinides essential to develop advanced nuclear energy systems, atomic weapons and environmental remediation technologies,” Li said. Li’s presentation will focus on applications of relativistic ab initio and density functional theory (DFT) methodologies to actinide complexes. Special emphasis will be given to applications of DFT methods to the geometries, electronic structures, spectroscopy and excited-state properties of various actinide compounds, from small actinide-containing molecules to large organoactinide systems.

Researchers are identifying molecules such as the so-called Klaui ligand that can effectively extract uranium and other actinides from their natural environment.

###

Li also is an organizer of the three-day ACS symposium Computational Actinide and Transactinide Chemistry: Progress and Perspectives.

Jun Li will make his presentation at the 234th American Chemical Society National Meeting in Boston, Mass., on Tuesday, Aug. 21, at 1:20 p.m., in the Boston Park Plaza’s Franklin Room.

A key resource for this research is the William R Wiley Environmental Molecular Sciences Laboratory (www.emsl.pnl.gov), a Department of Energy national scientifi c user facility located at PNNL.

PNNL (www.pnl.gov) is a DOE Offi ce of Science national laboratory that solves complex problems in energy, national security and the environment, and advances scientifi c frontiers in the chemical, biological, materials, environmental and computational sciences. PNNL employs 4,200 staff , has a $750 million annual budget, and has been managed by Ohio-based Battelle since the lab’s inception in 1965.


Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.