News Release

Next-generation, high-performance processor unveiled at the University of Texas at Austin

New processor has the potential of reaching trillions of calculations per second

Peer-Reviewed Publication

University of Texas at Austin

AUSTIN, Texas -- The prototype for a revolutionary new general-purpose computer processor, which has the potential of reaching trillions of calculations per second, has been designed and built by a team of computer scientists at The University of Texas at Austin.

The new processor, known as TRIPS (Tera-op, Reliable, Intelligently adaptive Processing System), could be used to accelerate industrial, consumer and scientific computing.

Professors Stephen Keckler, Doug Burger and Kathryn McKinley have been working on underlying technology that culminated in the TRIPS prototype for the past seven years. Their research team designed and built the hardware prototype chips and the software that runs on the chips.

"The TRIPS prototype is the first on a roadmap that will lead to ultra-powerful, flexible processors implemented in nanoscale technologies," said Burger, associate professor of computer sciences.

TRIPS is a demonstration of a new class of processing architectures called Explicit Data Graph Execution (EDGE). Unlike conventional architectures that process one instruction at a time, EDGE can process large blocks of information all at once and more efficiently.

Current "multicore" processing technologies increase speed by adding more processors, which individually may not be any faster than previous processors.

Adding processors shifts the burden of obtaining better performance to software programmers, who must assume the difficult task of rewriting their code to run well on a potentially large number of processors.

"EDGE technology offers an alternative approach when the race to multicore runs out of steam," said Keckler, associate professor of computer sciences.

Each TRIPS chip contains two processing cores, each of which can issue 16 operations per cycle with up to 1,024 instructions in flight simultaneously. Current high-performance processors are typically designed to sustain a maximum execution rate of four operations per cycle.

Though the prototype contains two 16-wide processors per chip, the research team aims to scale this up with further development.

###

Funding for the TRIPS project is provided by Defense Advanced Research Projects Agency.

The researchers will unveil a fully functional TRIPS prototype at a public presentation on April 30 on The University of Texas at Austin campus. To learn more, see http://oea.cs.utexas.edu/articles/index2007/trips_unveiling07.html.


Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.