News Release

New protein super-family discovered with critical functions for animal life

Peer-Reviewed Publication

PLOS

DANGER1A

image: The DANGER family member, DANGER1A, is expressed in a variety of cells (brown color) that lose their ability to divide, including nerves, muscle, and neuroendocrine cells. DANGER1A is first expressed in the developing mouse (embryonic stage 13.5) in the spinal cord (arrows), with increasing expression in postnatal day 0 mice, and is maximal in the adult mouse brain. Of interest is the high expression of DANGER1A in the insulin-producing islet cells of the pancreas. view more 

Credit: D. Neil Watkins, Sidney Kimmel Cancer Institute at Johns Hopkins University

Biologists have discovered a new super-family of developmental proteins that are critical for cell growth and differentiation and whose further study is expected to benefit research on cancer and the nerve-cell repair. The protein super-family, which existed before the emergence of animals about 850 million years ago, is of major importance for understanding how life evolved in primordial times. The discovery will be described in the 14 February 2007 issue of the journal PLoS ONE.

"This super-family is highly divergent, even in animals with an ancient lineage such as the sea anemone. This super-family also evolves rapidly, so its proteins may provide a model system for investigating how rapidly mutating genes contribute to, and are likely necessary for, the diversity and adaptability of animal life," explains Penn State Assistant Professor Randen Patterson, the senior author of the study. The new protein superfamily is named "DANGER," an acronym for "Differentiation and Neuronal Growth Evolve Rapidly."

The discovery was led by Patterson and Damian van Rossum, a postdoctoral scholar at Penn State in University Park, Pennsylvania, and collaborators at Johns Hopkins University in Baltimore, Maryland. "Most DANGER proteins have not been researched, but from what little we do know these proteins, they are critical for cell growth and differentiation," van Rossum says.

Because so many genomes for diverse organisms have been sequenced and annotated, the discovery of a new and deeply rooted protein family is quite rare. The relationship of the six family members comprising the DANGER super-family escaped detection due to the high rates of mutations between family members, although a few family members had been detected previously and had been shown to control the differentiation of cells into organs in worms, fish, and mice. Deletion of these their DANGER genes led to gross structural changes and prenatal death.

These findings also have clinical relevance, according to the researchers. "Many DANGER proteins are surrounded by transposable elements, which are pieces of DNA around genes that help the genes migrate back and forth throughout the genome," Patterson says. Because of this feature, DANGER genes can move throughout the genome, which could have positive or negative health consequences. "One member of the gene family resides in the genome at an area responsible for a human disease, the Smith-Magenis syndrome, which results in severe physical and mental retardation," Patterson explains. "DANGER genes also contain transposable elements that may participate in the genetic disturbances associated with chronic myeleoid leukemia."

One member of the super-family has been identified as playing a role in the development of the nervous system. "In cell culture and spinal cord neurons, the protein coded for by this gene stimulates lengthening and branching of neurons," Patterson says. Because many other DANGER proteins also are expressed in neurons, discovering their functions may be a key to deciphering the complexity of neuronal growth and development.

###

Disclaimer

The following press release refers to an upcoming article in PLoS ONE. The release has been provided by the article authors and/or their institutions. Any opinions expressed in this are the personal views of the contributors, and do not necessarily represent the views or policies of PLoS. PLoS expressly disclaims any and all warranties and liability in connection with the information found in the release and article and your use of such information.

In addition to Patterson and van Rossum, investigators in this study include N. Nikolaidis and D. Chalkia at Penn State and D. N. Watkins, R. K. Barrow, and S. H. Snyder at Johns Hopkins. The research was supported by grants from the National Institutes of Health and the Searle Foundation.

Citation: Nikolaidis N, Chalkia D, Watkins DN, Barrow RK, Snyder S, et al (2007) Ancient Origin of the New Developmental Superfamily DANGER. PLoS ONE 2(2): e204. doi:10.1371/journal.pone.0000204

PLEASE ADD THE LINK TO THE PUBLISHED ARTICLE IN ONLINE VERSIONS OF YOUR REPORT: http://dx.doi.org/10.1371/journal.pone.0000204

PRESS ONLY PREVIEW OF THE ARTICLE: http://www.plos.org/press/pone-02-02-patterson.pdf

CONTACT:
Randen Patterson
Tel: (+1) 814-865-1668
Email: rlp25@psu.edu


Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.