News Release

Theoretical physicists develop test for string theory

Peer-Reviewed Publication

Carnegie Mellon University

PITTSBURGH -- For decades, many scientists have criticized string theory, pointing out that it does not make predictions by which it can be tested. Now, researchers at Carnegie Mellon University; the University of California, San Diego; and The University of Texas at Austin have developed a test of string theory. Their test, described in the Jan. 26 Physical Review Letters, involves measurements of how elusive high-energy particles scatter during particle collisions. Most physicists believe that collisions will be observable at the Large Hadron Collider (LHC), which is set to turn on later this year at the European Laboratory for Particle Physics, commonly known as CERN.

"Our work shows that, in principle, string theory can be tested in a nontrivial way," explained Ira Rothstein, co-author of the paper and professor of physics at Carnegie Mellon.

Rothstein and colleagues Jacques Distler, professor of physics at The University of Texas at Austin; Benjamin Grinstein, professor of physics at the University of California, San Diego; and Carnegie Mellon graduate student Rafael Porto developed their test based on studies of how strongly W bosons scatter in high-energy particle collisions generated within a particle accelerator. W bosons are special because they carry a property called the weak force, which provides a fundamental way for particles to interact with one another.

When the LHC turns on later this year, scientists will begin to investigate the scattering of W bosons, which has not been possible with other particle accelerators. Because the new test follows from a measurement of W boson scattering, it could eventually be performed at the LHC, according to the authors.

"The beauty of our test is the simplicity of its assumptions," explained Grinstein. "The canonical forms of string theory include three mathematical assumptions — Lorentz invariance (the laws of physics are the same for all uniformly moving observers), analyticity (a smoothness criteria for the scattering of high-energy particles after a collision) and unitarity (all probabilities always add up to one). Our test sets bounds on these assumptions.

"If the test does not find what the theory predicts about W boson scattering," he added, "it would be evidence that one of string theory’s key mathematical assumptions is violated. In other words, string theory — as articulated in its current form — would be proven impossible."

"If the bounds are satisfied, we would still not know that string theory is correct," Distler said. "But if the bounds are violated, we would know that string theory, as it is currently understood, could not be correct. At the very least, the theory would have to be reshaped in a highly nontrivial way."

String theory attempts to unify nature’s four fundamental forces — gravity, electromagnetism, and the strong and weak forces — by positing that everything at the most basic level consists of strands of energy that vibrate at various rates and in multiple, undiscovered dimensions. These "strings" produce all known forces and particles in the universe, thus reconciling Einstein’s theory of general relativity (the large) with quantum mechanics (the small).

Proponents say that string theory is elegant and beautiful. Dissenters argue that it does not make predictions that can be tested experimentally, so the theory cannot be proven or falsified. And no particle accelerator yet exists that can attain the high energies needed to detect strings. Because of this technical limitation, tests of string theory have remained elusive until now.

"Since we don’t have a complete understanding of string theory, it’s impossible to rule out all possible models that are based on strings. However, most string theory models are based upon certain mathematical assumptions, and what we’ve shown is that such string theories have some definite predictions that can be tested," Rothstein said.

###

About Carnegie Mellon: Carnegie Mellon is a private research university with a distinctive mix of programs in engineering, computer science, robotics, business, public policy, fine arts and the humanities. More than 10,000 undergraduate and graduate students receive an education characterized by its focus on creating and implementing solutions for real problems, interdisciplinary collaboration, and innovation. A small student-to-faculty ratio provides an opportunity for close interaction between students and professors. While technology is pervasive on its 144-acre campus, Carnegie Mellon is also distinctive among leading research universities because of world-renowned programs in its College of Fine Arts. For more, visit www.cmu.edu.

About the University of California, San Diego: Since its founding less than 50 years ago, UC San Diego — one of the 10 campuses in the world-renowned University of California system — has rapidly achieved the status as one of the top institutions in the nation for higher education and research. With annual research funding of $728 million, UCSD ranks fifth in the nation — and first in the UC system — in federal R&D expenditures. UCSD faculty and graduate programs have been ranked 10th best in the nation by the National Research Council. The campus, which enrolls more than 25,000 students, has one of the nation’s highest percentages of faculty elected to the prestigious national academies. For more, visit: www.ucsd.edu.

About The University of Texas at Austin: The University of Texas at Austin is a major research university that is home to more than 48,000 students, 2,700 faculty and 17,000 staff members. The faculty is composed of outstanding scholars in a wide range of disciplines, including hundreds of members of prestigious academic and scientific organizations. The university has one of the largest graduate schools in the nation and one of the largest single-campus enrollments in the nation, including students from all 254 counties within Texas, all 50 states and more than 100 foreign countries. Colleges and schools include Architecture, the McCombs School of Business, Communication, Continuing Education Division, Education, Engineering, Fine Arts, Jackson School of Geosciences, Graduate Studies, School of Information, School of Law, LBJ School of Public Affairs, Liberal Arts, Natural Sciences, Nursing, Pharmacy, Social Work and interdisciplinary units. For more, visit www.utexas.edu.


Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.