News Release

Marine bacterium suspected to play role in global carbon and nitrogen cycles

Scientists successfully grow 'dwarf belonging to the sea' in laboratory

Peer-Reviewed Publication

U.S. National Science Foundation

Scientists are now revisiting, and perhaps revising, their thinking about how Archaea, an ancient kingdom of single-celled microorganisms, are involved in maintaining the global balance of nitrogen and carbon. Researchers have discovered the first Archaea known to oxidize ammonia for energy and metabolize carbon dioxide by successfully growing the tentatively named, Nitrosopumilus maritimus, in the lab.

"Data from several cultivation-independent, molecular experiments led us to suspect that Archaea could be involved in the marine nitrogen cycle. Subsequently having the organism isolated in the lab allowed us to confirm our suspicions," said David Stahl, professor of civil and environmental engineering at the University of Washington. Stahl's lab group specializes in environmental microbiology and how microbial communities function in diverse locations including the oceans, hot springs, animal intestines and the human mouth.

Archaea have primarily been associated with extreme environments like hot springs and deep-sea vents, but about a decade ago molecular studies proved their abundance in more common environs including the open ocean, freshwater and soil. Subsequent efforts to grow various samples of these organisms led to this cultivation of N. maritimus, or "dwarf belonging to the sea," by Stahl and scientists at the Woods Hole Oceanographic Institution.

They report their work in the Sept. 22 issue of the journal Nature.

As the true range and relationship of Archaea to other microbes is revealed, information about N. maritimus will serve as benchmarks for all microbiologists. Biochemical and genomic studies are already underway to learn the mechanisms by which N. maritimus uses nitrogen and how its physiology compares to other microorganisms.

The National Science Foundation's (NSF) Microbial Observatories (MO) program as well as an NSF postdoctoral fellowship in microbial biology supported this work. In addition to molecular and genome-enabled studies, the MO program funds new developments in the laboratory cultivation of novel microorganisms--a worthy endeavor considering that less than 1 percent of Earth's microorganisms have been cultured in the lab.

Matt Kane, NSF program manager for this research said, "This is a great example of how new approaches to microbial cultivation and cutting-edge molecular techniques can complement one another to achieve big advances in our understanding of the complexity of our global ecosystem." Kane says studies like these continue to highlight the importance of non disease-causing microorganisms and their critical role in our understanding of global environmental cycles.

###

Media Contact: Richard Vines, NSF, (703) 292-7963, rvines@nsf.gov

NSF-PR 05-164

The National Science Foundation (NSF) is an independent federal agency that supports fundamental research and education across all fields of science and engineering, with an annual budget of nearly $5.47 billion. NSF funds reach all 50 states through grants to nearly 2,000 universities and institutions. Each year, NSF receives about 40,000 competitive requests for funding, and makes about 11,000 new funding awards. The NSF also awards over $200 million in professional and service contracts yearly.

Receive official NSF news electronically through the e-mail delivery and notification system, MyNSF (formerly the Custom News Service). To subscribe, visit http://www.nsf.gov/mynsf/ and fill in the information under "new users".

Useful NSF Web Sites:
NSF Home Page: http://www.nsf.gov
NSF News: http://www.nsf.gov/news/
For the News Media: http://www.nsf.gov/news/newsroom.jsp
Science and Engineering Statistics: http://www.nsf.gov/statistics/
Awards Searches: http://www.nsf.gov/awardsearch/


Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.