News Release

$3.4 million directed to key UW-Madison MS study

Grant and Award Announcement

University of Wisconsin-Madison

MADISON -- In an effort to develop new techniques to repair and protect the nervous system in multiple sclerosis patients, including the use of human stem cells, the National Multiple Sclerosis Society has awarded $3.4 million to a team of University of Wisconsin-Madison scientists.

The group, led by School of Veterinary Medicine professor Ian D. Duncan, is developing cell transplant techniques that may one day be used to repair the damaged myelin -- the critical sheathing of nervous system fibers -- characteristic of the debilitating and unpredictable disease.

"It's all about myelin repair and protecting nerve fibers," says Duncan, an international authority on myelin and myelin-related diseases. "The goal is to translate bench research into clinical application."

Multiple sclerosis -- which affects an estimated 2.5 million people worldwide, 400,000 people in the United States and 10,000 in Wisconsin -- involves a misdirected attack by the immune system on myelin, the nerve fiber coating that speeds the signals of the central nervous system. Multiple sclerosis also destroys the underlying nerve fiber, causing symptoms such as numbness, blindness, cognitive dysfunction and paralysis.

An important part of the Wisconsin project, according to Duncan, will be efforts to direct human stem cells to become myelinating cells that could be used in transplants to repair the nervous system lesions characteristic of multiple sclerosis.

The project, Duncan adds, will also expand studies of the antibiotic minocycline, a drug that has shown potential for protecting nerve fibers and mitigating the debilitating symptoms of multiple sclerosis. Duncan's lab has already shown that the drug has anti-inflammatory properties in an animal model of MS.

The Wisconsin team, Duncan says, plans to deploy powerful, state-of-the-art imaging technologies, including magnetic resonance imaging (MRI) and Positron Emission Tomography (PET), to image lesions and how they respond to treatment.

The work to be funded by the new grant, part of a five-year, $30 million initiative by the National Multiple Sclerosis Society, is expected to lay the groundwork for clinical trials by refining cell transplant methods and the ability to image myelin and nerve fiber damage and cell repair at work. The new initiative, known as "Promise 2010," includes a pledge of $2 million in support from the Wisconsin chapter of the National Multiple Sclerosis Society.

"We're tremendously gratified by this level of support," Duncan said. "It's a step, we think, toward major clinical advances."

"This is a new chapter in MS research and should serve as a springboard for translating basic lab findings into important new treatments for people with MS," said John R. Richert, vice president of research and clinical programs for the National Multiple Sclerosis Society.

###

In addition to Duncan, UW-Madison team members include John O. Fleming, a professor of medical microbiology and neurology; Aaron Field, a professor of neurology and radiology; Su-Chun Zhang, a professor of anatomy and neurology; Andrew L. Alexander, a professor of medical physics and psychiatry; P. Charles Garell, a professor of neurological surgery; James E. Holden, a professor of medical physics and radiology; Mary Elizabeth Meyerand, a professor of medical physics and neurology; Thomas Cook, a senior scientist in biostatistics; Zsuzsa Fabry, a professor of pathology; Alex Converse, an assistant scientist at the Waisman Center; and Maria Nikodemova, an assistant scientist in medical sciences.

-- Terry Devitt (608) 262-8282, trdevitt@wisc.edu


Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.