News Release

Saturn's A Ring has oxygen, but not life

Peer-Reviewed Publication

University of Michigan

ANN ARBOR, Mich.---Data from the Cassini-Huygens satellite showing oxygen ions in the atmosphere around Saturn's rings suggests once again that molecular oxygen alone isn't a reliable indicator of whether a planet can support life.

That and other data are outlined in two papers in the Feb. 25 issue of the journal Science co-authored by University of Michigan engineering professors Tamas Gombosi, J. Hunter Waite and Kenneth Hansen; and T.E. Cravens from the University of Kansas. The papers belong to a series of publications on data collected by Cassini as it passed through the rings of Saturn on July 1.

Molecular oxygen forms when two oxygen atoms bond together and is known in chemical shorthand as O2. On Earth, it is a continual byproduct of plant respiration, and animals need this oxygen for life. But in Saturn's atmosphere, molecular oxygen was created without life present, through a chemical reaction with the sun's radiation and icy particles that comprise Saturn's rings.

"That means you don't need biology to produce an O2 atmosphere," Waite said. "If we want indicators to use in the search for life on other planets, we need to know what to look for. But oxygen alone isn't it."

Because Saturn's rings are made of water ice, one would expect to find atoms derived from water, such as atomic oxygen (one atom) rather than O2, Waite said. However, the paper, called "Oxygen Ions Observed Near Saturn's A Ring," suggests the formation of molecular oxygen atmospheres happens more often in the outer solar system than expected. There is earlier evidence of molecular oxygen atmospheres elsewhere in the solar system---for instance above the icy Galilean moons of Jupiter---he said.

Four U-M College of Engineering faculty members are involved in the Cassini mission to explore Saturn's rings and some of its moons. Waite leads the team operating the ion and neutral mass spectrometer, the instrument that detected and measured the molecular oxygen ions. Other team members are J.G. Luhmann of the University of California, Berkeley; R.V. Yelle, of the University of Arizona, Tuscon; W.T. Kasprzak, of the Goddard Space Flight Center; R.L. McNutt of Johns Hopkins University; and W.H. Ip, of the National Central University, Taiwan.

A second, viewpoint paper called, "Saturn's Variable Magnetosphere," by Hansen and Gombosi, who is chair of the College of Engineering's department of Atmospheric, Oceanic and Space Sciences, reviews key findings from the other Cassini teams, including new information that contradicts data gathered 25 years ago, when the space craft Voyager passed by the planet.

###

The University of Michigan College of Engineering is ranked among the top engineering schools in the country. Michigan Engineering boasts one of the largest research budgets of any public university, at $135 million for 2004. Michigan Engineering has 11 departments and two NSF Engineering Research Centers. Within those departments and centers, there is a special emphasis on research in three emerging industries: Nanotechnology and integrated microsystems; cellular and molecular biotechnology; and information technology. The College advances academic scholarship and markets cutting edge research to improve public heath and well-being.

For more information see the CoE home page: http://www.engin.umich.edu/index.html

U-M faculty involved in the Cassini-Huygens mission: http://www.umich.edu/news/index.html?Releases/2004/Jun04/r063004a

Jet Propulsion Lab on Cassini-Huygens: http://saturn.jpl.nasa.gov/home/index.cfm


Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.