News Release

Key to understanding how blood and blood vessel cells develop discovered

Mount Sinai School of Medicine study validates use of embryonic stem cell as model for study of blood and blood vessel cell development

Peer-Reviewed Publication

The Mount Sinai Hospital / Mount Sinai School of Medicine

Common sense leads to the conclusion that if you have blood cells you must have blood vessels and that if you have blood vessels they must have blood to carry. Researchers at Mount Sinai School of Medicine have presented the first clear evidence that nature ensures both develop together by using a common progenitor cell.

Scientists have long hypothesized about the existence of a common origin for both vascular cells and haematopitic cells --- the blood-forming cells that can mature into red blood cells and important immune cells. A new study that appeared this month in Nature gives the strongest proof yet for this theory.

Gordon Keller, PhD, Professor of Gene Therapy and Molecular Medicine and colleagues identified the shared precursor cell, called the hemangioblast in early mouse embryos. While the existence of this cell was first proposed over one hundred years ago, previous studies have only shown that such a cell type exists in cultures of differentiated embryonic stem cells grown in petri dishes.

"Now that we have proven that the same steps are involved in the production of blood and blood vessels in the embryo as has been observed in the petri dish, we have validated the usefulness of the embryonic stem cells as a model," said Dr. Keller.

Dr. Keller and colleague tagged a certain subpopulation of the cells with a fluorescent protein and showed that the labeled cells gave rise to both blood and blood vessel cells. They conducted further experiments to define the distribution of these cells throughout the embryo.

"We're hopeful that this work will provide insight into the therapeutic potential of embryonic cells for the treatment of blood cell disorders such as leukemia, and further that it will help to identify the factors that influence embryonic cells to form a particular cell type."

###

Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.