News Release

International team of scientists successfully observes elusive neutrino oscillation

UCI's Henry Sobel, co-spokesperson for the US Contingent, announces findings

Peer-Reviewed Publication

University of California - Irvine

Irvine, Calif., July 7, 2004 -- A new analysis of atmospheric neutrino data by a team of international scientists has shown for the first time the distinctive pattern of neutrino oscillation that has eluded researchers until now.

The team of scientists, known as the Super-Kamiokande Collaboration, includes a UCI group led by professors Henry Sobel and David Casper. Sobel, professor of physics and astronomy, is one of the two U.S. spokespersons for the experiment. The team will report its findings in a forthcoming issue of Physical Review Letters.

"Our findings confirm that neutrinos have mass and that they change state from one type of neutrino to another," said Sobel, who is principal investigator at UCI for the experiment and a member of the experiment's Executive Committee.

Super-Kamiokande, a 50,000-ton detector located in the Kamioka Mozumi mine in Japan, is designed to search for proton decay, observe cosmic rays and detect neutrinos. One of the fundamental particles that make up the universe, the neutrino was first detected experimentally in the 1950s by the late Frederick Reines, UCI distinguished professor emeritus of physics, who received the 1995 Nobel Prize for this work.

Neutrinos are light, electrically neutral and able to traverse great distances in matter. They generally pass right through the Earth unscattered, but, occasionally, one will interact in the Super-Kamiokande detector to produce a subatomic particle such as a muon or an electron. Atmospheric neutrinos are produced by high-energy collisions of cosmic rays with the Earth's upper atmosphere and come in two types, or "flavors," called electron-type and muon-type.

In 1998, the Super-Kamiokande Collaboration reported the discovery of neutrino oscillation – a term used to describe neutrinos changing from one flavor to another – by observing that the number of upward-moving muon-neutrinos, which had traveled a long distance to the Super-Kamiokande detector through the entire Earth, was smaller than the number of downward-moving muon-neutrinos, which had traveled a short distance from the upper atmosphere to the underground detector. The Super-Kamiokande Collaboration showed that the muon-neutrino was most likely changing into a third flavor, called the tau-neutrino, that is not produced in the cosmic ray collisions.

In the theory of neutrino mixing, the probability that a neutrino of one flavor changes into another is a sinusoidal function of the ratio of distance traveled (L) divided by the neutrino energy (E). The distinctive pattern predicted by this theory is that the flavor change probability should dip toward zero and then recover as the L/E ratio increases in value. For this analysis of the atmospheric neutrino data, the Super-Kamiokande physicists invented a new method to select only those events with very good measurements of travel distance and neutrino energy.

In the 1998 analysis, the distinctive oscillatory pattern was washed out since many of the neutrino events had poor measurements of the travel distance or neutrino energy. With approximately twice as much data now recorded compared to 1998 and greatly improved techniques since then, the new analysis used only 20 percent of the entire atmospheric neutrino sample of 14,000 events, but each event selected was assigned a well-determined value of travel distance (L) and neutrino energy (E). The number of neutrino events was then studied as a function of the ratio L/E. The data showed a prominent dip at a value of L/E, consistent with the theory of neutrino mixing.

According to theory, neutrinos may change from one flavor to another only if neutrinos have mass. Therefore, the initial discovery of neutrino oscillation also was interpreted as the first evidence that neutrinos have mass. In the past, a few unusual theories attempted to explain the deficit of upward-moving muon neutrinos, such as the case where neutrinos decay to other particles. The new analysis by Super-Kamiokande rejects those theories since they do not predict the oscillatory pattern. The new measurement represents the most precise measurement of the neutrino mass difference to date.

The Super-Kamiokande Collaboration includes scientists from institutions in Japan, the United States and Korea. Principal funding for the experiment is provided by the Japanese Ministry of Education, Science, Sports, and Culture; the U.S. Department of Energy; and the National Science Foundation. In addition to advancing our understanding of basic science, the collaboration has established a strong international partnership between the Japanese and American teams.

For more information, please visit:
www.ps.uci.edu/~superk/superk-uci-home.html
www-sk.icrr.u-tokyo.ac.jp/doc/sk/index.html

The Super-Kamiokande Collaboration:
Kamioka Observatory, Institute for Cosmic Ray Research, University of Tokyo
Research Center for Cosmic Neutrinos, Institute for Cosmic Ray Research, University of Tokyo
Department of Physics, Boston University, Boston
Physics Department, Brookhaven National Laboratory
Department of Physics and Astronomy, University of California, Irvine
Department of Physics, California State University, Dominguez Hills
Department of Physics, Chonnam National University
Department of Physics, George Mason University
Department of Physics, Gifu University
Department of Physics and Astronomy, University of Hawaii
Department of Physics, Indiana University
Institute of Particle and Nuclear Studies, High Energy Accelerator Research Organization (KEK) Department of Physics, Kobe University
Department of Physics, Kyoto University
Physics Division, P-23, Los Alamos National Laboratory
Department of Physics and Astronomy, Louisiana State University
Department of Physics, University of Maryland
Department of Physics, Massachusetts Institute of Technology
Department of Physics, University of Minnesota, Duluth
Department of Physics, Miyagi University of Education
Department of Physics and Astronomy, State University of New York, Stony Brook
Department of Physics, Nagoya University
Department of Physics, Niigata University
Department of Physics, Osaka University
Department of Physics, Seoul National University
International and Cultural Studies, Shizuoka Seika College
Department of Systems Engineering, Shizuoka University
Department of Physics, Sungkyunkwan University
Research Center for Neutrino Science, Tohoku University
The University of Tokyo
Department of Physics, Tokai University
Department of Physics, Tokyo Institute for Technology
Institute of Experimental Physics, Warsaw University
Department of Physics, University of Washington

###

About the University of California, Irvine: The University of California, Irvine is a top-ranked public university dedicated to research, scholarship and community. Founded in 1965, UCI is among the fastest-growing University of California campuses, with approximately 24,000 undergraduate and graduate students and about 1,300 faculty members. The third-largest employer in dynamic Orange County, UCI contributes an annual economic impact of $3 billion.

UCI maintains an online directory of faculty available as experts to the media. To access, visit: www.today.uci.edu/experts.


Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.