News Release

Viruses may be environmentally friendly decontaminants

Peer-Reviewed Publication

American Society for Microbiology

BALTIMORE, MD – March 8, 2004 --Viruses could become the next generation of environmentally friendly decontaminants, replacing harmful chemicals like chlorine dioxide in cleaning up areas exposed to anthrax spores, according to findings released today at the American Society for Microbiology's Biodefense Research Meeting. Researchers from the Biological Defense Research Directorate in Rockville, Maryland, the Defense Science Technology Laboratory in the United Kingdom, and the University of Maryland Biotechnology Institute presented their findings.

"Decontamination modalities for anthrax to date have centered on the use of toxic biocides (formaldehyde, chlorine dioxide) or gamma radiation. These approaches suffer from the dual handicap of toxicity to man and the environment and/or are extremely expensive," says Leslie Baillie, one of the scientists on the study. "There is an urgent need for strategies which are environmentally friendly, can be used to decontaminate a range of environments with little or no toxicity to fauna and flora and are cost effective."

In the study the researchers investigated the feasibility of using lytic bacteriophage, viruses that specifically target and kill bacteria, to reduce the level of spores made by the bacteria Bacillus thuringiensis a close but harmless relative of the organism that causes anthrax. Treatment of the soil with bacteriophage resulted in a significant reduction in spore contamination.

"This study demonstrates the feasibility of decontaminating soil containing spores of a B. thuringiensis, a close relative of B. anthracis, by the co-administration of lytic bacteriophage and spore germinants. Given the toxicity of standard decontamination regimens for B. anthracis, this approach represents an environmentally friendly, cost effective alternative," says Baillie.

###

The American Society for Microbiology (ASM) is the largest single life science society, composed of over 42,000 scientists, teachers, physicians, and health professionals. Its mission is to promote research and training in the microbiological sciences and to assist communication between scientists, policymakers, and the public to improve health, economic well being, and the environment.

Further information on the ASM Biodefense Research Meeting can be found online at http://www.asmbiodefense.org.


Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.