News Release

NSF awards $31.9 million in grants to study biocomplexity in the environment

Grant and Award Announcement

U.S. National Science Foundation

To better understand the interrelationships among living things from molecular structures to genes to ecosystems--and how they interact with their environment--the National Science Foundation (NSF) has awarded $31.9 million in 30 research grants to scientists and engineers across the country.

"These investigations will provide a more complete understanding of natural processes and cycles, of human behaviors and decisions in the natural world, and of ways to use new technology effectively to observe the environment and sustain the diversity of life on Earth," said Rita Colwell, director of NSF. "By placing biocomplexity studies in an environmental context, this effort emphasizes research on developing the people, tools and ideas necessary to understand these ribbons of interconnections, which are often difficult to tease apart."

Research on Biocomplexity in the Environment, said Colwell, will shed light on connections that are not necessarily straightforward or easily discerned, but that are critically important to the future of life on our planet. "Breakthroughs in particle physics and genetics, advances in computational science, information technology and microsensors, are creating global momentum for new ideas and tools," said Colwell. "The sum of these dynamic influences has given us the means to begin charting a comprehensive view of life, matter and the environment at all scales of time and place."

A systems approach is the cornerstone of biocomplexity studies, Colwell believes. Scientists and engineers must work in teams across diverse fields that go well beyond biology to include physics, engineering, economics, geochemistry and others, on studies that extend from submolecules to mass changes in climate with potential for worldwide impact. "We have powerful new technologies and tools that now make biocomplexity research possible," said Colwell. "The biggest, most exciting scientific questions are at the interfaces of disciplines, such as computational ecology and environmental genetics."

NSF's Special Competition in Biocomplexity in the Environment: 2003, is the fourth year of a multi-year effort. Five subcategories of awards were made: Dynamics of Coupled Natural and Human Systems (CNH), with eight awards totaling $8.5 million; Coupled Biogeochemical Cycles (CBC), with ten awards totaling $8.3 million; Genome-Enabled Environmental Science and Engineering (GENEN), with four awards totaling $4.4 million; Instrumentation Development for Environmental Activities (IDEA), with three awards totaling $5.2 million, and Materials Use: Science, Engineering, and Society (MUSES), with five awards totaling $ 5.4 million.

Research projects in the CNH sub-category include studies of regional land-climate interactions; overlapping river and road networks in a changing landscape; and changing environments and their uses in the North American Arctic. In the CBC sub-category, scientists will investigate mercury in a northern forest landscape; plankton dynamics and carbon cycling in the equatorial Pacific Ocean; and the regulation of metal bioavailability in floodplains. In GENEN, such projects as studies of coral reef genomics, and the oxygen-stress response in organisms that live in extreme environments, are underway. IDEA grantees will conduct research on the development of large-scale wireless sensor networks for observation of ecosystem processes; test a land-ocean biogeochemical observatory for nutrient and carbon cycling; and develop communication technologies for real-time, unattended monitoring of chemicals important in biogeochemical cycling. MUSES investigators will study sustainable materials use for drinking water infrastructure; sustainable concrete infrastructure materials and systems; and tracking heavy metal life cycle pathways.

###

For a complete list of research projects, please see: http://www.nsf.gov/geo/ere/ereweb/fund-biocomplex.cfm

NSF Program Contact: Margaret Cavanaugh, (703) 292-8002, mcavanau@nsf.gov

The National Science Foundation is an independent federal agency that supports fundamental research and education across all fields of science and engineering, with an annual budget of nearly $5.3 billion. National Science Foundation funds reach all 50 states through grants to nearly 2,000 universities and institutions. Each year, NSF receives about 30,000 competitive requests for funding, and makes about 10,000 new funding awards. The National Science Foundation also awards over $200 million in professional and service contracts yearly.

Receive official National Science Foundation news electronically through the e-mail delivery system, NSFnews. To subscribe, send an e-mail message to join-nsfnews@lists.nsf.gov. In the body of the message, type "subscribe nsfnews" and then type your name. (Ex.: "subscribe nsfnews John Smith")

Useful National Science Foundation Web Sites
NSF Home Page: http://www.nsf.gov/
News Highlights: http://www.nsf.gov/od/lpa
Newsroom: http://www.nsf.gov/od/lpa/news/media/start.htm
Science Statistics: http://www.nsf.gov/sbe/srs/stats.htm
Awards Searches: http://www.fastlane.nsf.gov/a6/A6Start.htm

FACT SHEET Biocomplexity in the Environment

What is the Biocomplexity in the Environment Priority Area?

From individual cells to entire ecosystems, biocomplexity refers to phenomena that arise from the dynamic interactions that take place between biological systems, including the influence of humans and the physical environment.

The National Science Foundation, through its Biocomplexity in the Environment (BE) Priority Area, is undertaking a multi-year, agency-wide set of activities in environmental science, engineering and education. This includes funding of both focused initiatives and core programs that foster research on interdependencies among the elements of specific environmental systems and the interactions of different systems. BE is included in NSF's Environmental Research and Education (ERE) portfolio; the first BE awards were made in fiscal year 1999.

All organisms--from microbes to human beings--fall within the BE framework, as do environments that range from frozen polar regions and volcanic vents, to temperate forests and agricultural lands, to the neighborhoods and industries of urban centers.

What kinds of research does the Biocomplexity in the Environment Priority Area support?

BE research is adding to knowledge in a variety of fields, from global climate change to the development of new technologies like sensors and other observing instruments. This new knowledge is helping scientists develop a better understanding of the role of living organisms in biogeochemical cycles, including the global carbon, nitrogen and water cycles. Researchers will also study human influences on natural processes, and the reverse, the influence of natural processes on human behavior.

BE fosters new ways to model complex systems using new theories, methods and computational strategies. BE research also allows scientists to develop genetic, nano- and molecular-level methods of examining complex processes in the environment and to increase understanding of the relationship between genetic information and the functioning of ecosystems. Projects funded under the BE Priority Area use design strategies that incorporate elements of several disciplines of science to discover new materials, sensors, engineering processes and other technologies.

BE funding supports investigations, for example, that yield a greater comprehension of how the external environment affects cellular- and organism-level biosystems, as well as the development of genetic and molecular-level tools to investigate complex nano-molecular scale environmental processes.

To establish and strengthen interdisciplinary areas of investigation, new communities of scientists need to be formed. BE brings together members of disparate disciplines into teams that focus on complex environmental systems that include humans and non-human organisms and emphasizes scientific inquiries of so-called non-linear behavior, or characteristics that do not function or unfold in a logical, step-wise progression. By its very nature, biocomplexity is...complex.

What specific disciplinary area does the Biocomplexity in the Environment area support, and at what funding levels?

Five topical areas, funded at approximately $35 million per year, are currently the focus of BE studies:

    Dynamics of Coupled Natural and Human Systems (CNH): Promotes quantitative, interdisciplinary analyses of human and natural system processes and the complex interactions among human and natural systems at diverse scales.

    Coupled Biogeochemical Cycles (CBC): Focuses on the interrelations of biological, geochemical, geological, and physical processes at all temporal and spatial scales, with particular emphasis on understanding linkages between chemical or physical cycles and the influence of human and other biotic factors on those cycles.

    Genome-Enabled Environmental Science and Engineering (GEN-EN): Encourages the integrated use of genomic and computational approaches to gain novel insights into environmental questions and problems.

    Instrumentation Development for Environmental Activities (IDEA): Supports the development of instrumentation and software that takes advantage of microelectronics, photonics, telemetry, robotics, chemical and physical sensing systems, modeling, data mining, and analysis techniques to bring recent laboratory instrumentation advances to bear on the full spectrum of environmental biocomplexity studies.

    Materials Use: Engineering & Society (MUSES): Supports projects that study reducing adverse human impact on resource use; the design and synthesis of new materials with environmentally benign impacts; and maximizing the efficient use of individual materials throughout their life cycles.

To view awards that have been made under the BE Priority Area, link to http://www.nsf.gov/ere and click on "List of BE Awardees" at the bottom of the page.


Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.