News Release

Finding the right path

Peer-Reviewed Publication

Ecological Society of America

According to the World Health Organization, Tuberculosis (Mycobacterium tuberculosis or TB) will kill two million people this year, with the projected number of new infections over the next twenty years reaching a billion. A rapidly moving, constantly mutating disease, TB's effects are made worse by its ability to quickly react to new drug treatments, becoming resistant to antibiotics. Searching for a way to improve treatment, a group of researchers from the University of Tennessee developed a model to determine the most effective way of managing the bacteria's resistance.

Drug cycling is one of many drug use policies that can be applied to treat illness and manage the resistance of viruses and bacteria. Depending on when a person becomes infected, they are placed in a group to receive a particular drug treatment. Groups infected later or earlier are treated with different drugs. Mathematical model results support that cycling is potentially useful as a tool for controlling the resistance of pathogens such as Tuberculosis.

"Tuberculosis resistance is not just an issue to minimize locally; it's a global concern," says Scott Duke-Sylvester, one of the researchers who will present the group's work at the Modeling session during the Ecological Society of America's Annual Meeting.

Examining the resistance of TB using a large number of potential dosing cycles, the team from Tennessee compared levels of coordination between regional treatment plans. Three treatment options were modeled with the system: drug cycling with no regional coordination, coordinating the drug cycling but utilizing different treatments between regions, or treating all regions with the same cycle and drugs. Their findings have implications for countries around the globe and, according to Duke-Sylvester, could pertain to any disease treated with chemical-based drugs.

"The European Union (EU) is an excellent example of where this model could be applied," suggests Duke-Sylvester.

The EU allows easier travel between member countries. This new regional mobility has implications for more migration of people and with them, TB. According to the researchers, the EU has formally recognized that coordination of resistance management could prove useful. In his presentation Duke-Sylvester will describe what levels of cooperation would be necessary and possibly the most effective way to handle the problems surrounding tuberculosis.

For more information on Duke-Sylvester's presentation, visit the ESA's 87th Annual Meeting website: http://www.esa.org/Tucson. Held in sunny Tucson, Arizona, the theme of the meeting is, "A Convocation Understanding and Restoring Ecosystems." Close to 3,500 researchers and conservationists are expected to attend.

Scott Duke-Sylvester's presentation "Spatial Control of Tuberculosis," is one of several presentations in the Modeling session at the Ecological Society of America's 87th Annual Meeting in Tucson Arizona. The session runs from 8 – 11:30 am on Tuesday, August 6th, in the Apache Meeting room of the Tucson Convention Center.

###

The Ecological Society of America (ESA) is a scientific, non-profit, 7,800-member organization founded in 1915. Through ESA reports, journals, membership research, and expert testimony to Congress, ESA seeks to promote the responsible application of ecological data and principles to the solution of environmental problems. ESA publishes three scientific, peer-reviewed journals: Ecology, Ecological Applications, and Ecological Monographs. Information about the Society and its activities is published in the Society's quarterly newsletter, ESA NewSource, and in the quarterly Bulletin. More information can be found on the ESA website: http://www.esa.org.


Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.