News Release

University of Warwick researchers in nose-on-a-chip-project

Peer-Reviewed Publication

University of Warwick

An ambitious project is underway to build the world’s smallest electronic nose.

If the project succeeds, it is expected that the technology would have many potential applications in areas such as environmental monitoring, healthcare and food safety.

The aim is to combine the odour sensors together with the signal processing components on to a single silicon chip, around a square centimetre in size. The instrument would require very little power and could be held comfortably in the palm of the hand.

The project is being carried out by scientists and engineers from the universities of Warwick , Leicester, and Edinburgh, with funding from the Swindon based Engineering and Physical Sciences Research Council.

Electronic noses have been around for some years, and are used in the food, beverage and perfumery industries. However, the machines are large, have limited sensitivity and need to be re-calibrated frequently.

University of Warwick Engineering Professor Julian Gardner is assembling novel mechanisms for channelling the odours on to the sensor arrays. Professor Gardner says, “We are taking recent developments in the fields of nanotechnology and polymer physics to design novel microsystems that are able to mimic our nasal passages and olfactory sensors. Combining such technologies with biologically-inspired signal processing methods developed at Leicester and Edinburgh should lead to a new generation of so-called micro-noses or a nose-on-a-chip.”

“We are hoping we can improve on existing systems by following biology much more closely,” says Dr Tim Pearce of Leicester University, who is co-ordinating the research. “The information processing of our system is very much inspired by how the olfactory system works in nature.”

In common with most existing electronic noses, the sensing part of the device will consist of arrays of electrically conductive polymers. However, the new system intends to process and interpret the signals in a way much more akin to biology.

“When sufficient numbers of odour molecules interact with an olfactory receptor neuron in the real nose, an action potential is induced – a spike of voltage that is sent down a nerve fibre to be processed by the olfactory pathway of the brain,” says Dr Pearce. “We will design our system to do a similar thing. When the mixture of odour molecules meets our sensor array, a volley of spikes will be generated. If there is a high concentration of odour molecules, trains of spikes will be generated and their frequency will be proportional to the concentration of the molecule.”

This ‘neuromorphic’ approach introduces a time factor into the system – the number of spikes per second – unlike the signals in conventional electronic noses, which usually ignore time information. This gives the signal processor another layer of information, which could be useful, for example, when trying to distinguish between complex mixtures of odour molecules.

At Edinburgh Dr Alister Hamilton’s team is devising ways to integrate the whole system on to a single silicon chip. “We are designing analogue circuits that interface to the sensor array developed at Warwick, and sending the signals into some analogue circuits that mimic the mammalian olfactory system,” says Dr Hamilton. “We’re using parallel analogue computation strategies that are derived from biology rather than implementing a conventional digital processor. By concentrating on very low power consumption analogue circuits we hope to produce a system with long battery life.”

###

Notes for Editors:

The Engineering and Physical Sciences Research Council (EPSRC) is the largest of the United Kingdom’s seven government-funded research councils. Its mission is to support the highest quality research and related postgraduate training in engineering and the physical sciences. EPSRC aims to advance knowledge and technology and to provide trained engineers and scientists for the benefit of the United Kingdom and the quality of life of its citizens. It has the further role of promoting public awareness of engineering and the physical sciences. Website address for more information: www.epsrc.ac.uk/

For further details contact:
Professor Julian Gardner. (University of Warwick) Tel: 02476 523695; e-mail: j.w.gardner@warwick.ac.uk
Dr Tim Pearce. ( Leicester University) Tel: 0116 223 1290; e-mail: t.c.pearce@leicester.ac.uk
Dr Alister Hamilton. (Edinburgh University ) Tel: 0131 650 5597; e-mail: alister.hamilton@ee.ed.ac.uk
Peter Dunn, Press Officer, Senate House, University of Warwick, Tel: 024 76 523708, Email: puapjd@admin.warwick.ac.uk
Jane Reck, EPSRC Press Officer. Tel 01793 444312. e-mail: jane.reck@epsrc.ac.uk


Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.