News Release

Researchers think electrons can 'supernova surf' at near lightspeed

Peer-Reviewed Publication

University of Warwick

Researchers have long been puzzled about the origins of cosmic rays – high energy particles which move very close to the speed of light. Now a team of scientists from the UK and Sweden think that an idea for a particle accelerator first put forward twenty years ago might explain how high energy cosmic ray electrons are produced close to the remnants of exploded stars (“supernovae”).

These very high speed electrons betray their presence by emitting “synchrotron” radiation as they gyrate in a magnetic field. Until now however it has been far from clear why the electrons are accelerated to such high energies.

Researchers from the University of Warwick, the Culham Science Centre in Oxfordshire, and Linköping University in Sweden used computer simulations to investigate the behaviour of electrons in the presence of a magnetic field and a wave consisting of an oscillating electric field, and found that, depending on the intensities of the magnetic field and the wave, and the direction in which the wave is moving, it is possible for a charged particle, such as an electron, to be accelerated indefinitely by the wave electric field.

This idea was proposed by physicists Tom Katsouleas and John Dawson at the University of California Los Angeles in 1983 as a novel method of producing high energy charged particles in the lab, with the wave being provided by a laser. The term “surfatron” was coined to describe this type of accelerator, because the particles ride across the wave front like surfers riding across an ocean wave.

There are no lasers in supernova remnants, but the Warwick, Culham and Linköping researchers believe that the rapid expansion of a supernova remnant into space creates shock waves that accelerate ions. These ions then generate waves which can play a role similar to that of the laser in the surfatron concept. The analogy is not exact. For example, whereas the surfatron laser has only a single wavelength, in the case of the supernova remnant it is impossible to avoid the generation of waves with a range of wavelengths: this makes it more likely that particles will eventually stop gaining energy. However, the Culham-Warwick-Linköping team has shown that acceleration of electrons to speeds approaching that of light is still possible in these circumstances. The Warwick-Culham-Linköping research will be published in the journal Physical Review Letters in early December.

###

Note for Editors: The researchers acknowledge funding from the PPARC, the Department of Trade and Industry, the Commission of the European Communities, and Naturvetenskapliga forskningsrådet (NFR).

For further Information please contact

Professor Sandra Chapman,
Space and Astrophysics Group, University of Warwick, UK,
sandrac@astro.warwick.ac.uk
http://www.astro.warwick.ac.uk
tel 02476 523390 fax 02476 692016
mobile 07740291984

Peter Dunn
Press Officer
University of Warwick
Tel: 024 76523708
Email: p.j.dunn@warwick.ac.uk

Dr K. G. McClements, UKAEA Culham Division, Culham Science Centre, UK, k.g.mcclements@ukaea.org.uk
http://www.fusion.org.uk/
tel: +44 1235 463303 fax: +44 1235 463435

Dr M. E. Dieckmann
ITN, University of Linköping, Sweden
markd@itn.liu.se
http://svg.itn.liu.se
Tel: 0046-(0)11 363328
Fax: 0046-(0)11 363270


Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.