News Release

Giant eyes for the VLT interferometer

Peer-Reviewed Publication

ESO

It started as a preparatory technical experiment and it soon developed into a spectacular success. Those astronomers and engineers who were present in the control room that night now think of it as the scientific dawn of the Very Large Telescope Interferometer (VLTI).

On October 29, 2001, ANTU and MELIPAL, two of the four VLT 8.2-m Unit Telescopes at the ESO Paranal Observatory, were linked for the first time. Light from the southern star Achernar (Alpha Eridani) was captured by the two telescopes and sent to a common focus in the observatory's Interferometric Laboratory.

Following careful adjustments of the optical paths, interferometric fringes were soon recorded there, proving that the beams from the two telescopes had been successfully combined "in phase". From an analysis of the observed pattern (the "fringe contrast"), the angular diameter of Achernar was determined to be 1.9 milli-arcsec. At the star's distance (145 light-years), this corresponds to a size of 13 million km. The observation is equivalent to measuring the size of a 4-metre long car on the surface of the Moon.

This result marks the exciting starting point for operations with the Very Large Telescope Interferometer (VLTI) and it was immediately followed up by other scientific observations. Among these were the first measurements of the diameters of three red dwarf stars ("Kapteyn's star" - HD 33793, HD 217987 and HD 36395), a precise determination of the variable diameters of the pulsating Cepheid stars Beta Doradus and Zeta Geminorum (of great importance for the calibration of the universal distance scale), as well as a first interferometric measurement of the core of Eta Carinae, an intriguing, massive southern object that may possibly become the next supernova in our galaxy.

This milestone is another important step towards the ultimate goal of the VLT project - to combine all four 8.2-m telescopes into the most powerful optical/infrared telescope system on Earth. When ready, it will be able to reveal at least 15 times finer details in astronomical objects than what is possible with any existing, single ground-based telescope.

###

Read the details in ESO Press Release 23/01, now available at

http://www.eso.org/outreach/press-rel/pr-2001/pr-23-01.html with five photos and a "scientific appendix" in which the first results are expounded in more detail


Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.