The principle of the DNA movable-type storage system. (IMAGE)
Caption
(a) Illustration of the data-writing process of the DNA movable-type storage system. For the data-writing process, high-throughput automation equipment is employed to select the desired DNA movable types and assemble them into corresponding storage units with a length of 408 bp. (b) The overall workflow of the data-writing and -reading processes of the DNA movable-type storage system. (c) Diagram of the ordered assembly of DNA movable types. By selectively digesting either with BbsI or BsaI, the representative DNA movable types A and B can be assembled in a desired order (A-B or B-A) using T4 ligase. Blue and grey areas indicate the data encoding regions. (d) Structure of the DNA movable types. The blue area in the middle stands for the data-encoding region; the two orange modules are helper fragments, which are two randomly generated sequences for improving the ligation efficiency. The two primer binding sets represented by black dotted boxes include two restriction enzyme sites of BbsI and BsaI, respectively. All the DNA movable types have a 6 bp data-encoding region and an overall length of 120 bp. There are 4096 possible sequence combinations for all 6 bp regions, yielding a total of 4096 unique pre-manufactured DNA movable types (a longer data-encoding region can also be applied, in which case the overall number of DNA movable types required to be pre-manufactured will be correspondingly enlarged).
Credit
Zi-Yi Gong et al.
Usage Restrictions
Credit must be given to the creator. Only noncommercial uses of the work are permitted. No derivatives or adaptations of the work are permitted.
License
CC BY-NC-ND