Quantum sensor nanoarray. (IMAGE) School of Science, The University of Tokyo Caption (a) Boron vacancy defect in hexagonal boron nitride. The vacancy acts as an atom-sized quantum sensor for magnetic field measurements. The magnetic field-sensitive quantum sensor behaves like a nano-sized “magnetic needle”. (b) Photoluminescence of a quantum sensor nanoarray. By analyzing the change in the photoluminescence intensity in response to microwaves, the researchers measured the magnetic field at each sensor spot. Many quantum sensors are generated at each bright spot. Credit Sasaki et al., 2023 Usage Restrictions Credit must be given to the creator. License CC BY Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.