A resonance model for alternating 3c-2e bonds in a triangular boron lattice (IMAGE)
Caption
(a) In chemistry, atoms in a stable material generally obey the octet rule. For electron-deficient boron atoms, a concept of three-center two electron (3c-2e) bond was proposed to fulfill the octet rule for small boron-related molecules, such as diborane (B2H6). (b) Except the octet rule, bond resonance could further stabilize the materials. Like in benzene, the resonance of two-center two-electron (2c-2e) π bonds leads to a large delocalized π bond. (c) In the triangular boron lattice (pink network), the resonance of alternating 3c-2e σ bonds in neighboring triangles leads to the delocalization of σ electrons, (d) and the resonance of alternating 2c-2e π bonds also leads to the delocalization of π electrons. (e) Considering the bonding and resonance of both σ and π, the octet rule is satisfied for every boron atom in the triangular boron sheets.
Credit
UNIST
Usage Restrictions
NONE
License
Licensed content