Concept of GET-pMINFLUX demonstrated by L-PAINT. (IMAGE)
Caption
a, pMINFLUX interrogates the position of a fluorophore with multiple spatially displaced doughnut beams and yields 2D fluorescence lifetime images with nanometer precision. b, Graphene provides a measure for the axial distance to graphene. The fluorescence lifetime shortens, the closer a fluorophore is to graphene. c, Combining the lateral information of pMINFLUX with the axial graphene distance information yields 3D localizations. GET-pMINFLUX yields photon efficient localizations with nanometer precision. This enables L-PAINT. The schematic of the DNA origami structure has a DNA-pointer protruding. The fluorophore modified DNA-pointer can transiently to one of three binding sites spaced with 6 nm. Within 2 s this dense structure is with nanometer precision localized in 3D by combining L-PAINT and GET-pMINFLUX.
Credit
by Jonas Zähringer, Fiona Cole, Johann Bohlen Florian Steiner, Izabela Kamińska, Philip Tinnefeld
Usage Restrictions
Credit must be given to the creator.
License
CC BY