Relation Between Galaxy Mass and Black Hole Mass (IMAGE)
Caption
A new theory explains how black holes grow as a function of galaxy mass and eventually quench star formation in their host galaxies. The images on this graph are of nearby galaxies at the present era taken by the Sloan Digital Sky Survey, chosen to represent galaxy evolution. The graph shows how the evolution of small, dense galaxies differs from that of larger, more diffuse galaxies. The denser galaxies have larger black holes for their mass and therefore quench sooner, at a lower mass, whereas the more diffuse galaxies have smaller black holes for their mass and must grow more before quenching occurs. The change to a steeper slope marks the entry to the "green valley", where quenching strongly begins. The theory says that black holes start to grow faster at this point. Our Milky Way is at that critical point now, and its black hole is predicted to grow by another factor of three before full quenching.
Credit
Sandra Faber/Sofia Quiros/SDSS
Usage Restrictions
For use only with news coverage of this research
License
Licensed content