Working Principle of the On-Chip Nanowire Laser (IMAGE)
Light Publishing Center, Changchun Institute of Optics, Fine Mechanics And Physics, CAS
Caption
a, optical image of a hybrid MZI structure under excitation. b, the schematic configuration of the on-chip nanowire laser. A CdS nanowire is used as the gain material and is evanescently coupled to an ?-shaped SiN waveguide at both sides to form a hybrid MZI structure. In the coupling area, SiN waveguide bends are predesigned to ensure a high coupling efficiency with excellent reproducibility. Fibre-to-chip grating couplers are designed at both ends of the SiN waveguide, which couple the laser signal from the on-chip SiN waveguide into standard optical fibres for optical characterization. c, Lasing spectra obtained at different pumping intensities above the threshold. The dominant lasing peak is centered at a wavelength of approximately 518.9 nm with a linewidth of approximately 0.1 nm. The side-mode suppression ratio increases with increasing pumping intensity and realizes a maximum value of approximately a factor of 20 (13 dB). d, optical image of the measurement setup under an optical microscope. The measurement setup uses output fibres to collect signals out of the chip via fibre-to-chip grating couplers.
Credit
by Qingyang Bao, Weijia Li, Peizhen Xu, Ming Zhang, Daoxin Dai, Pan Wang, Xin Guo, and Limin Tong
Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.